
Learning Object Location Predictors with Boosting and Grammar-Guided Feature Extraction

Damian Eads1

http://www.cs.ucsc.edu/~eads

Edward Rosten2

http://mi.eng.cam.ac.uk/~er258

David Helmbold1

http://www.cs.ucsc.edu/~dph

1 Department of Computer Science
University of California
Santa Cruz, California, USA

2 Department of Engineering,
Cambridge University,
Cambridge, UK

In this paper we present BEAMER: a system for unstructured object de-
tection which takes in images and emits a list of (x,y) pairs denoting the
locations of the detected objects. The system is designed to operate on
greyscale images with small objects which have in many cases a similar
appearance to the background. Some example data is given in Figure 1.

The system has three layers. The first layer uses a grammar which
stochastically generates a rich set of image processing programs for ex-
tracting features from the image. The features are then post-processed
to remove detections which are likely to be in error. We then use a lo-
calizing scheme to extract the object locations from a weighted sum of
the post-processed features. All stages of the algorithm are trained: the
post-processed features are selected and combined using AdaBoost [1],
and the parameters of the post-processing and object detection are trained
using cross-validation. The processing pipeline is shown in Figure 2

Feature extraction Features are extracted from the image using image
processing programs generated stochastically using a generative gram-
mar. The grammar specifies a number of low-level unary image process-
ing operations, such as greyscale morphology, Gabor filters, median fil-
tering, Haar-like features [2], and ways of combining them with binary
operators such as addition, multiplication and so on. An example gener-
ated program operating on an image, I is:

multiply(Laplacian(erode(I)),Gabor(I))

Post processing Features are turned in to weak classifications using thresh-
olding. However, the AdaBoost stage is attempting to learn a pixel clas-
sifier, and there are many circumstances where good pixel classification
can lead to poor object detection and vice-versa. For instance detecting
half of the pixels on all of the objects is a poor segmentation, but excellent
detection. As a result, without post-processing, the pixel classification is
often very noisy. So, after thresholding the individual features, either ero-
sion, median filtering, dilation, no post-processing or region processing
is performed. Region processing performs a 4-way connectivity flood-fill
and turns sufficiently large areas in to abstentions. The parameters of the
post-processing are learned in a validation stage.

Object detection The previous stages learn a pixel classifier, but the prob-
lem remains of how to turn a pixel classification in to a good set of object
detections. The options we use are 1. connected components analysis,
followed by centroiding, 2. blurring, then finding large local maxima
and 3. finding the modes of a kernel density estimation (KDE) using the
large local maxima as the input data. The best method and parameters are
learned in a validation stage.

Validation and evaluation Evaluation of unstructured object detection
is not well-defined, since it is not clear exactly what a true/false posi-
tive/negative is. It depends on the problem. Nevertheless these must be
defined in order to learn parameters in a validation stage, and then eval-
uate the final system on unseen data. We have therefore defined three
methods of scoring which are suitable for different tasks.
Cueing: In order to cue humans to objects in an image, detections must
be nearby the object of interest, and multiple detections for one object are
not penalized. Objects with no detections nearby are false negatives, and
detections nearby no objects are false positives. All other detections are
true positives.
Tracking: For the results to be useful in a tracking system, the detections
must be nearby the objects of interest. However, multiple detections of
one object are harmful, so these are counted as false positives.
Counting: For counting, detection positions need not be accurate.
Once the definition of what is a true positive etc had been established, the
area under the ROC curve can be optimised.

Figure 1: Some example data. Left: an aerial image of traffic. Right some
difficult examples: (top) background, (bottom) cars.

Feature
Extractor

Feature
Extractor

Feature
Extractor

Feature
Extractor
Feature
Extractor
Feature
Extractor

>= a

< b

>= c

Region Grow 
[t=500]

Erode [r=2],
Dilate [r=3]

Region Grow 
[t=1000]

Weighted
Sum

Grammar
Feature(X)->...

Detector

(x,y)

(x,y)

(x,y)

Scoring
Metric

Hit

Miss

Hit

ROC Curve

Feature Extraction Apply Decision Stumps Postprocessing

Boosting Ensemble

Features Weak Hypotheses

Confidence 
Image

Selected with AdaBoost
Scores Final Detections

Parameters Selected through Validation

Figure 2: The Beamer object detection pipeline. The grey arrows show
the flow of data during object detection.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mean FP Per Image/Mean # of Objects Per Image

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 R

a
te

Grammars and Postprocessing [Cueing]

Grammar w/ PP
Grammar w/o PP
Haar w/ PP
Haar w/o PP
Random

Figure 3: The figures show the performance of the system with ROC
curves. Both plots show that best performance is obtained when our
feature grammars and post-processing (PP) are used, compared to using
Haar-like features. For comparison we show the effect of randomly scat-
tering detections around the image. In this case, the system is optimized
and evaluated using the ‘cueing’ metric.

A thorough experimental evaluation shows the value of our system.
In particular, we perform tests with each subsystem omitted to show the
value given by that particular subsystem. An example of some of the
results, illustrating both the benefit of the feature grammars and post-
processing is shown in Figure 3.

[1] Yoav Freund and Robert E. Schapire. Experiments with a new boost-
ing algorithm. In Int. Conf. Mach. Learning, pages 148–156, 1996.

[2] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. IEEE Conf. Comput. Vis. Pat. Rec., 1:511,
2001.


