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ABSTRACT 

We present a method for detecting a large number of moving targets, such as cars and people, in geographically 
referenced video. The problem is difficult, due to the large and variable number of targets which enter and leave the field 
of view, and due to imperfect geo-projection and registration. In our method, we assume feature extraction produces a 
collection of candidate locations (points in 2D space) for each frame. Some of these locations are real objects, but many 
are false alarms. Typical feature extraction might be frame differencing, or target recognition. For each candidate 
location, and at each time step, our algorithm outputs a velocity estimate and confidence which can be thresholded to 
detect objects with constant velocity. In this paper we derive the algorithm, investigate the free parameters, and compare 
its performance to a multi-target tracking algorithm.  

Keywords: multi-target tracking, moving object detection, wide-area video. 
 

1. INTRODUCTION 

Wide area imaging sensors can be placed on helicopters, balloons, small aircraft or unmanned aerial vehicles and 
geographically referenced video communicated to a ground station in real-time. Compared to satellite imagery, which 
provides data at time scales of days or months, geo-spatial video provides data to observe and model temporal 
phenomena at time scales of seconds or minutes. Wide area video presents new challenges for object detection and 
tracking. Many objects of interest (e.g. vehicles and people) cover very few pixels and therefore accurate detection is 
very difficult. Data arrives at about 1 or 2 frames per second, which means point-like moving objects move anywhere 
from 1 to 200 pixels. Data is typically acquired at oblique viewing angles, which means buildings and other tall 
landmarks suffer from parallax which introduces a large amount of motion clutter. In addition, registration is often 
required in real-time and is therefore approximate, e.g., stationary objects might move up to 10s of pixels. Robust 
moving object detection can play two roles in this dataset:  

 
1. The first is as a preprocessor to a tracking system. Optimal multi-target tracking must deal with a combinatorial 

number of  hypotheses and many algorithms do not scale well with the number of observations. Moving object 
detection can help with this problem by filtering through 10’s of thousands of detections and placing greater 
emphasis on locations most likely to be real targets.  
 

2. The second role of moving object detection is to provide more general statistics. By accumulating local velocity 
estimates over a particular location, over long periods of time, we can produce many useful data products. For 
example, consistent velocity measurements along a line could indicate the presence of a road. This is much 
simpler problem than tracking all moving objects, and typically, track identity is less important than 
accumulating representative statistics.  

 

In Section 2 we introduce the algorithm, and discuss its parameters and implementation. In section 3 we use synthetic 
data to investigate the filter’s parameter choices and then evaluate the performance of the algorithm in comparison to a 
multi-target tracking system in Section 4. We provide an example of a real-world geo-spatial video application in 
Section 5 and discuss future directions in Section 6.  



 
 

 

 

2. RECURRENT VELOCITY FILTER 

2.1 Definition 

To introduce the Recurrent Velocity Filter (RVF) we first consider the situation where we have one observation, per time 
step, over a number of time steps:  XT ൌ ሼxଵ, . . , xTሽ. We observe approximate positions, and we imagine they are 
generated by an object with a constant velocity trajectory. We compute the first order differences, DT ൌ ሼdଶ,ଵ, dଷ,ଶ, . . , dT,Tିଵሽ, where d୧,୨ ൌ x୧ െ x୨and estimate the velocity ݒ given the differences: 
 pሺݒ|DTሻ ן pሺDT|ݒሻpሺݒሻ. (1)  
We assume that the differences are independent and identically distributed:  
 pሺDT|ݒሻ ൌ ෑ p൫d୲,୲ିଵ|ݒ൯T

୲ୀଵ . (2)  

Now we consider the more complex situation where we have a large, variable number of observations each time step: XT ൌ ቄ൛xଵ,ଵ, . . , xଵ,Nሺଵሻൟ, … . . , ൛xT,ଵ, . . , xT,NሺTሻൟቅ. In this case, we imagine the observations are generated by Nሺtሻ different 

objects, each with a constant velocity trajectory. Note that the number of trajectories assumed responsible for generating 
the observations varies over time and is equal to the number of observations at a given time. We would like to estimate 
the velocities of the trajectories, ௧ܸ ൌ |௧,ଶݒ|௧,ଵݒൣ …  ୲,୧ is the velocity of the trajectory generatingݒ ௧,ேሺ௧ሻ൧, whereݒ|
observation i at time t. Following (1), we base the estimate on differences, which in this case, includes all pair-wise 
differences between observations in consecutive frames:  
 d୧,୨ ൌ x୲,୧ െ x୲ିଵ,୨ ׊ i, j, t. (3)  
To simplify the problem we treat the trajectories at any given time as independent:  
 pሺ ௧ܸ|D୲ሻ ן ෑ p൫ݒ୲,୧|D୲൯Nሺ୲ሻ

୧ୀଵ . (4)  

Estimating p൫ݒ୲,୧|D୲൯ is still difficult since we do not know which observations were generated by the trajectory 
(although we do know the trajectory ends with observation ݔ௧,௜). We define a mapping, ܯሺݐሻ א ࣧ, which identifies a 
unique sequence of observations through time. ࣧ is the set of all possible sequences and we assume that it is distributed 
uniformly and independently, so that ܲሺܯሻ ൌ 1 |ࣧ|ൗ .  If we were given the correct ܯ for the trajectory ending at 

observation ݅ at time ܶ (i.e. a trajectory where ܯሺܶሻ ൌ ݅), the likelihood function (2) would be straightforward:  
 p൫D|்ݒ,௜, M൯ ൌ ෑ p൫dMሺ୲ሻ,Mሺ୲ିଵ,ሻ|ݒ൯.T

୲ୀଵ  (5)  

However, since the correct mapping is not known, we must consider all possible sequences. From (1) and (5):  
 p൫ݒT,୧|DT൯ ן ෍ ෑ p൫dMሺ୲ሻ,Mሺ୲ିଵ,ሻ|ݒ൯T

୲ୀଵ p൫ݒT,୧൯Mࣧא . (6)  

This sum grows exponentially in time, but we can reorder the operations as follows:  
 p൫ݒT,୧|D୲൯ ן ෍ p൫d୧,୨|ݒ൯୨אNሺ୲ିଵሻ ෍ p൫d୨,୩|ݒ൯ … ෍ p൫d୫,୬|ݒ൯p൫ݒT,୧൯୬אNሺଵሻ୩אNሺ୲ିଶሻ . (7)  

This can be implemented recursively, which leads to our basic definition of the Recurrent Velocity Filter:  
 p൫ݒ୲,୧|D୲൯ ן ෍ p൫d୧,୨|ݒ൯p൫ݒ୲ିଵ,୨|D୲ିଵ൯Nሺ୲ିଵሻ

୨ୀଵ . (8)  

While this equation is more efficient to implement than (6), it is still problematic since the number of terms in the 
posterior is exponential in time. One way to address this problem is to approximate the density functions in (8) with 
histograms. An alternative explored in this paper is to approximate the posterior with a single term at each time step.  
 
  



 
 

 

 

2.2 Implementation with Gaussians 

We represent the density functions with Gaussians: 
 p൫d୧,୨|ݒ൯ ൌ ࣨ൫d୧,୨, ∑P൯ p൫ݒ଴,୧|D଴൯ ൌ ࣨ൫μ଴, ∑଴൯ 

 
(9)  

where ∑P, μ଴, ∑଴ must be provided. If we approximate: 
 p൫ݒ୲ିଵ,୨|D୲ିଵ൯ ן ࣨ ቀμ୲ିଵ,୨, ∑୲ିଵ,୨ቁ (10)  

then we can write (8) as: 
 p൫ݒ୲,୧|D୲൯ ן ෍ ࣨ൫d୧,୨, ∑P൯ࣨ ቀμ୲ିଵ,୨, ∑୲ିଵ,୨ቁNሺ୲ିଵሻ

୨ୀଵ  

 

(11)  

or: 
 p൫ݒ୲,୧|D୲൯ ן ෍ .୨ݖ ࣨ ቀμ୨ୡ, ∑୨ୡቁNሺ୲ିଵሻ

୨ୀଵ  (12)  

Where ݖ௝, μ୨ୡ, σ୨ୡ are found via:  

 ࣨሺa, Aሻ. ࣨሺb, Bሻ ൌ .ݖ ࣨሺc, CሻC ൌ ሺAିଵ ൅ Bିଵሻିଵ c ൌ CAିଵa ൅ CBିଵb ݖ ൌ z଴expሾെ0.5ሺaTAିଵa ൅ bTBିଵb െ cTCିଵcሻሿ z଴ ൌ ሺ2πሻିଶ/D|C|ଵ/ଶ|A|ିଵ/ଶ|B|ିଵ/ଶ
(13)  

 
We approximate the sum (12) with a single Gaussian: 
 p൫ݒ୲,୧|D୲൯ ן ࣨ൫μ୲,୧, ∑୲,୧൯ 

 
(14)  

and also calculate a confidence score for the estimate: ݇௧,௜. The confidence score will be thresholded to identify the 
observations which are most likely to belong to a constant velocity trajectory. We will investigate two different 
approximations. The first is inspired by probabilistic data association (PDA) and the second by nearest neighbor data 
association (NN): 

RVF-PDA 

μ୲,୧ ൌ 1∑ ௝ேሺ௧ିଵሻ௝ୀଵݖ ෍ z୨μ୧,୨ୡNሺ୲ିଵሻ
୨ୀଵ  

 ∑୲,୧ ൌ 1∑ ௝ேሺ௧ିଵሻ௝ୀଵݖ ෍ z୨∑୧,୨     ୡNሺ୲ିଵሻ
୨ୀଵ  

 ݇௧,௜ ൌ ෍ ௝ேሺ௧ିଵሻݖ
௝ୀଵ  

(15)  

 

RVF-NN 

μ୲,୧ ൌ ୸ౠݔܽ݉݃ݎܽ ቄ μ୧,୨ୡ ቅଵNሺ୲ିଵሻ
 

    ∑୲,୧ ൌ ୸ౠ൛ ∑୧,୨ୡݔܽ݉݃ݎܽ ൟଵNሺ୲ିଵሻ
 

 ݇௧,௜ ൌ max ൛ݖ௝ൟଵேሺ௧ିଵሻ
 

(16)  



 
 

 

 

Given σP, µ0, σ଴ 
 
FOR each observation i in frame 0 % Setup initial conditions 
    µ0,i = µ0  
    σ଴,୧ = σ଴ 
    w0,i = 0  
END FOR 
 
FOR frame t = 1 to ∞ % Run the filter forever  
     FOR each observation i in frame t 
          FOR each observation j in frame t-1 
              di,j = xt,i - xt-1,j  
              σୡ = σP* σ୲ିଵ,୨ / (σP+ σ୲ିଵ,୨)  

              µc = σୡ
σPൗ * di,j   + σୡ

σ୲ିଵ,୨ൗ * µt-1,j 

              wc = 1 / (σP+σ୲ିଵ,୨) exp (-0.5*(ฮd୧,୨ฮ/σP + ฮμ୲ିଵ,୨ฮ/σ୲ିଵ,୨ - ԡμୡԡ/σୡ) ) 
              µt,i += wc * µc 
              σ୲,୧ += wc * σୡ 
              wt += wc 
          END FOR      
          %  RVF - PDA    RVF - NN 
          µt,i = µt,i / wt  or    µc with largest wc  
          σ୲,୧ = σ୲,୧ / wt   or   σୡ  with largest wc    
          wt,i = wt  or    largest wc  
     END FOR 
     Flag observations with wt,i > threshold        
END FOR 

2.3 Parameters and Implementation 

The free parameters for the RVF are ∑P, ∑଴, and μ଴.  ∑଴ and μ଴ specify the prior velocity estimate for the observations. 
These estimates are used for the observations in the first time step. The prior estimate could also be used for observations 
in other time steps. This leads to an additional term in (11) which captures the possibility that observations are not 
associated with any trajectories. This additional term also provides a way to include any prior information about the 
observations that may be available. For example, observations may come with velocity estimates from other sources. In 
our experiments we did not have this additional information, and ∑଴ was set sufficiently large that the contribution of the 
additional term was negligible.  
 
A significant parameter for the algorithm is the covariance of the likelihood function: ∑P (which we call RVF variance). 
In the simplest case we implement a symmetric Gaussian, in which case the covariance matrix is defined with a single 
scalar:  
 ∑P ൌ ൤σP 00 σP൨ 

 
(17)  

An alternative, which might work better in some applications, is to replace the symmetric Gaussian with an asymmetric 
Gaussian, where the major axis is aligned with the direction of d୧,୨ and whose aspect ratio is proportional to the 
magnitude of d୧,୨.When the magnitude is zero, the ratio is one, and distribution is symmetric. This type of noise model is 
useful when high speed objects have more uncertainty in their speed than their direction. In this paper we restrict 
ourselves to the symmetric noise model (17), in which case (13) can be implemented with many less operations. Pseudo 
code for this implementation is provided in Table 1.  
 

Table.1. Pseudo code for the algorithm in the case of the symmetric Gaussian. 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 
 
 
 
 



 
 

 

 

2.4 Relationship to Other Methods 

The RVF has some similarities to the Hough transform in that pattern parameters, such as velocity, are estimated from 
independent and identically distributed observations (see Stevens1 for a probabilistic perspective on the Hough 
transform). However, these approaches are typically applied offline over a much longer temporal window and they use a 
single global transformation2. Our algorithm is online and local.  
 
The RVF explicitly trys to associate observations. The data association problem in the RVF is also encountered in 
tracking. Some tracking methods assume the number of objects is known and then use a variety of techniques to 
associate observations with targets3. Other methods include the number of objects as part of the estimation problem4. In 
this context, the RVF appears to be most similar to Probabilistic Data Association5. However, in the RVF there are no 
dynamics and no state variables (such as tracks) that are persistent across time.  
 
The RVF addresses the same combinatorial problem for data association as multi-target tracking algorithms. However, 
one advantage of the RVF is that it solves a smaller problem than traditional tracking algorithms. In the applications we 
have described, a typical tracking algorithm would estimate both the position and velocity of each object, leading to a 4-
dimensional problem. In comparison, the RVF only solves a 2-dimensional problem and hence it is possible that more 
complex parameterizations can be used. For example, we could use 2-d histograms to represent the distributions. Due to 
the rapid increase in histogram size with dimension, this approach is often not possible with tracking algorithms6.  

3. PARAMETER INVESTIGATION 

We performed a number of experiments with synthetic data to investigate the various aspects of the RVF. We randomly 
initialize up to five linear trajectories in the first frame. We randomly choose the start position and velocity for each 
trajectory: the position is within 500 by 500 pixels and the velocity is between -10 and 10 in both horizontal and vertical 
components. We propagate the trajectories for 50 frames and subject the positions in each frame to additive Gaussian 
noise, which we call observation noise. For each frame we also randomly add 20 additional points as clutter. We apply 
the RVF to the sequence, and threshold the weight wt,i to determine if the observation is part of a trajectory. Figure 1 
provides an example of a typical input and output from an experiment accumulated over 50 frames.   
 

      
Fig. 1a.  Accumulated observations over 50 frames. The observations generated by the synthetic trajectories are circled. 1b. 

The observations that were calculated by the RVF to be above threshold.  

 
For our first experiment we investigate how detection performance varies with the observation noise and the RVF noise. 
We set µ0=[0 0] and  σ଴=1500. We increased the observation noise variance from 0 through to 12. For each value of 
observation noise, we run the RVF with σP = 0.1, 1, 5, 10, 50, 100, 500, 1000 ten times and average the ROC curves. In 
figure 2 we show the value of σPwith the best detection rate for various numbers of false alarms. It is clear that the RVF 
variance is related to the observation variance but not in a simple way. We hypothesize that the RVF variance is 
capturing two different things. The first is our estimate for the observation variance, and the second is the weighting 
between old observations and new data. For example, we could introduce a second parameter ߙ to implement weighting 
between old and new observations:  



 
 

 

 

 
 p൫ݒ୲,୧|D୲൯ ן ෍ ቀp൫d୧,୨|ݒ൯ቁߙ ቀp൫ݒ୲ିଵ,୨|D୲ିଵ൯ቁଵିߙNሺ୲ିଵሻ

୨ୀଵ . (18)  

 
 

 
However, when we make our Gaussian approximation (14) we are renormalizing between each iteration and this means ߙ simply scales the value of σP. This has the desired effect: the higher the variance σP, the less weight we place on the 
new observation, but it also means it is difficult to relate σP to the observation noise, as illustrated in Figure 2a.  
 

  

Fig. 2a. The relationship between RVF-NN variance and observation noise. 2b.  Performance of RVF-NN with different 
temporal window sizes. 

Another free parameter in the algorithm is the temporal window size. In our derivation of the RVF we only considered 
associations in the previous time step. However, in practice observations are prone to drop-out and it is possible that an 
observation should be associated with samples further back in time:  
 p൫ݒ୲,୧|D୲൯ ן ෍ ෍ p൫d୧,୨|ݒ൯p൫ݒ୲ି୵,୨|D୲ି୵൯Nሺ୲ିଵሻ

୨ୀଵ
W

୵ୀଵ . (19)  

We investigate the effect of observation drop-out and temporal window size in a second experiment. We use an 
observation variance of 2 and randomly removed samples with probability 0.1. We set the RVF variance at 50 and the 
results for different window sizes, averaged over 10 runs, and shown in Figure 2b. The first observation is that drop-out 
significantly reduces the performance of the window size 1 algorithm (the performance with no drop-out can be seen in 
Figure 3). Performance was improved with a temporal window size of 2, but further increases had a negative effect. We 
also note that the computational cost of the algorithm increases rapidly with temporal window size. If we consider all 
possible associations in each frame then the window length 2 is twice as expensive as the window length 1 
implementation. In practice, it is typical to only include associations within a certain distance, which is determined by 
the maximum speed of targets.  

4. PERFORMANCE COMPARISON 

We compare the RVF to multi-target tracking algorithms using the same synthetic test set that was used in Section 3. 
Multi-target tracking is a difficult problem and many different methods have been proposed. In this paper we implement 
a fairly simple algorithm which uses multiple independent Kalman filters and greedy data association at each time step. 
The algorithms are summarized in Table 2. Note that on the first frame, we start with zero Kalman filters and so the code 
begins with step 6. 
 
 
 

Best RVF variance for observation variance Different temporal window sizes for 10% drop-out 



 
 

 

 

FOR T = startTime to endTime 
1. Predict  - All Kalman filters predict position for current frame. 
2. Associate – Assign observations to Kalman filters. 

a. PDA   
i. Calculate observation as a weighted combination of actual observations 
ii. Weight of observation is proportional to the probability that the observation 

was generated by the track. 
b.  NN 

i. Uses the highest probability observation as calculated in PDA. 
3. Likelihood - Calculate the probability that the assigned observation was generated by the 

track. 
4. Identify – Flag observations whose probabilities are lower than a threshold (0.001).  
5. Update – Update the Kalman filters using assigned observations.  
6. Initialize – Initialize new Kalman filters on observations that were flagged in step 4. 

 

 

Table.2. Outline of multi-target tracking algorithms used in the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After we have applied the multi-target tracking algorithm to the dataset, we post-process the tracks to measure 
performance. For each track we calculate the average likelihood over the length of the track and then flag tracks that 
have an average likelihood above a certain threshold (adjusted to generate the ROC curves). Finally, to calculate the 
error we collect all the updated locations (step 5) for all flagged tracks and compare the point set to the ground truth. 
Track locations within 10 pixels of a moving object location are considered a detection. Multiple detections per point are 
not penalized. All other track locations are considered false alarms.  
 
We compare the detection performance for the four methods:  

1. RVF-PDA: Recurrent Velocity Filter using (15) 
2. RVF-NN: Recurrent Velocity Filter using (16) 
3. KF-PDA: Kalman filters with weighted sum of observations. 
4. KF-NN: Kalman filters with nearest neighbor observations. 

 

There is zero process noise in the synthetic data sets, and we set the process noise of the Kalman filter to 0.1. We 
performed four experiments with different amounts of observation noise. This value is also used for the observation 
noise of the Kalman filters. The Kalman filter parameters are therefore very close to optimal for the data set. The RVF 
variance was held constant across all 4 experiments at a value of 150. The results in figure 3 are averaged over 10 
experiments.  

The RVF-NN consistently outperforms the RVF-PDA. At small noise variance the Kalman filter approaches outperform 
the RVF approach. This is partly due to the fact that the RVF missed detections early in the sequence. That is, it takes 
several frames for the confidence values to reach above threshold. When the Kalman filters succeed, they typically 
include the complete track. At higher levels of noise variance we observe the RVF performed extremely robustly, 
outperforming the Kalman filter implementations.    



 
 

 

 

 

 

Fig. 3. Performance comparison between RVF and Kalman filter implementations for various amounts of observation noise.  

 

5. REAL WORLD EXAMPLE 

 
For illustrative purposes, we applied the RVF-NN algorithm to a wide area video data set. The sequence is 2000 by 2000 
pixels and 100 frames long. The stabilization is not ideal, and the accumulated moving object detection hits are shown in 
Figure 4a. There are roughly 150 hits per frame. An un-optimized C implementation of the RVF-NN running on a 3GHz 
Xeon processor took approximately 1ms per frame. We timed the RVF-NN processing 1000 points per frame at 100ms 
per frame. The accumulated observations that were above threshold according to the RVF are shown in Figure 4b. 
Ground truth was not available for this dataset, but the results show several distinct line segments which correspond to 
vehicles moving in the scene. The number of false alarms was typically less than 5 per frame. Given this much reduced 
dataset, a simple nearest neighbor tracking system achieved reasonable results.  



 
 

 

 

 
Fig. 4a. Accumulated hits from moving object detection. The double straight line on the bottom left is due to edge artifacts.   

4b. Accumulated hits from RVF-NN.  

6. CONCLUSION 

We have presented a novel method to assign velocity attributes and confidence scores to noisy position observations. 
The method has very few parameters, and the default values appear to work well in a wide variety of situations. The 
method is simple to implement and extremely fast to execute. In future work we plan to investigate the performance of 
non-symmetric Gaussian parameters, and also evaluate how the RVF should be integrated within a tracking system. One 
option is to use the RVF as a pre-filter and only pass observations to the tracking system that are above threshold. A 
second option would be to use the velocity estimate to augment the observation vector and supply the tracking system 
with the covariance matrix that is predicted for each observation. This does not reduce the number of observations, but 
depending on what multi-target tracking system is used, it may help reduce the number of hypotheses that need to be 
evaluated.  
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