Optimized corner detection and object detection

Edward Rosten

Damian Eads, David Helmbold, Reid Porter, Tom Drummond

Optimizing the right thing

Two examples:

- 1. Corner detection
- 2. Object detection

What are they and how do you optimize them?

What is corner detection?

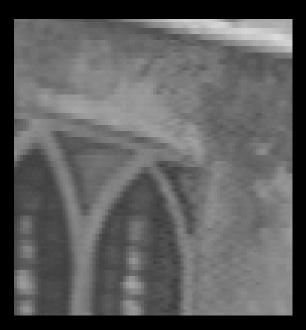
Useful for:

• 2D tracking, 3D tracking, SLAM, object recognition, etc.

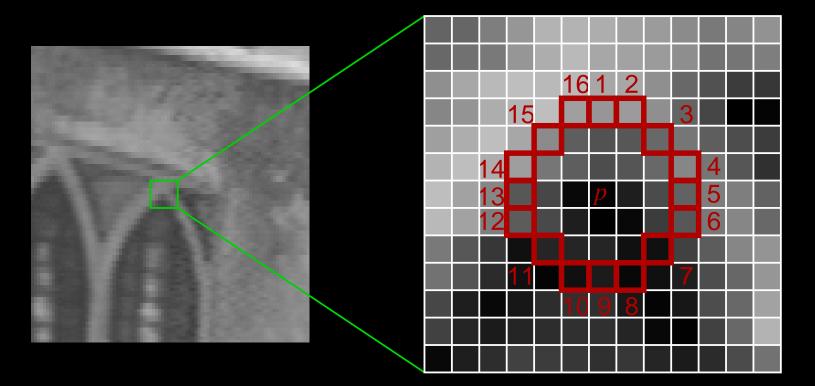
- Visually 'salient' features.
- Localized in 2D.
- Sparse.
- High 'information' content.
- Repeatable between images.

Edward Rosten, Reid Porter, Tom Drummond

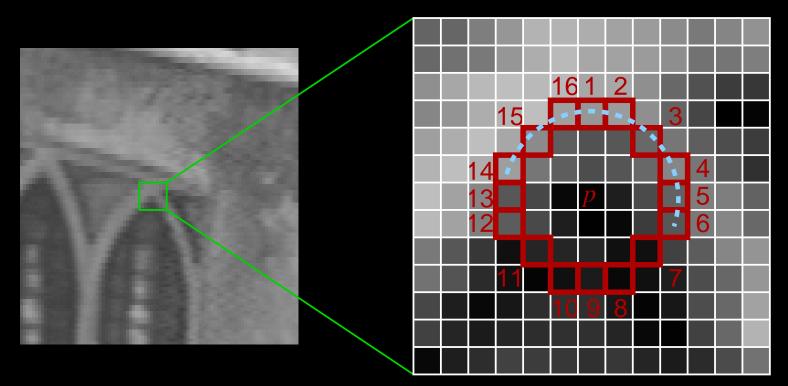
The segment-test detector



The segment-test detector



The segment-test detector

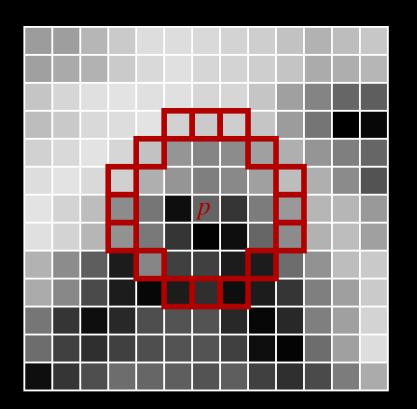


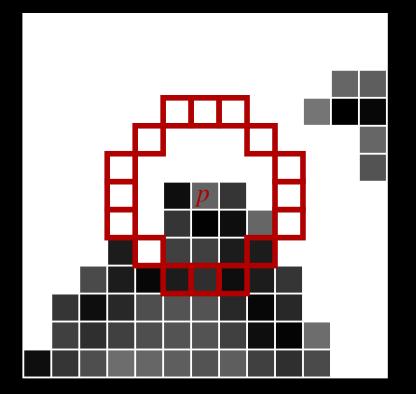
Contiguous arc of N or more pixels:

• All much brighter than p (brighter than p + t).

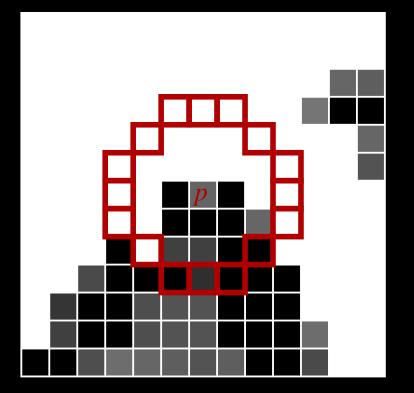
or

• All much darker than p (darker than p - t).

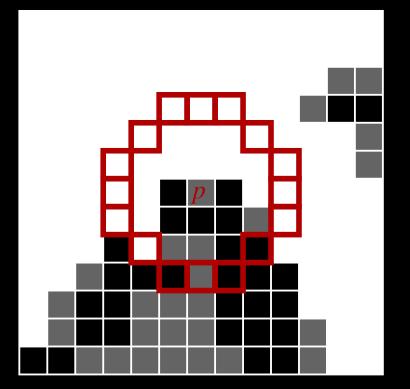




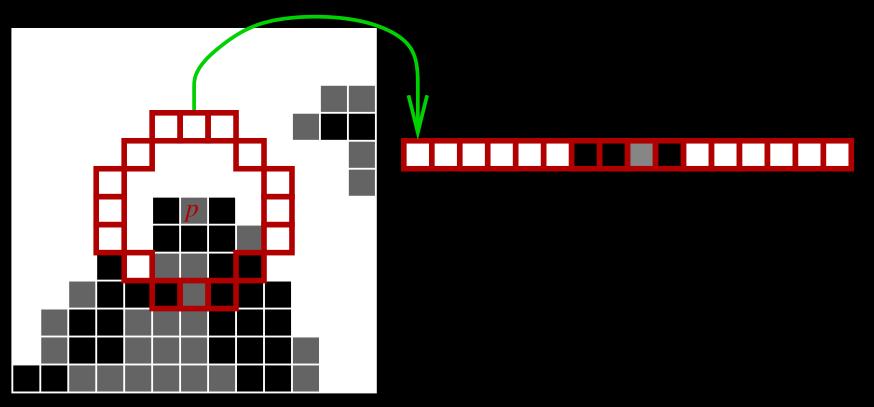
Pixels are either:
Much brighter.



- Pixels are either:
 - Much brighter.
 - Much darker.



- Pixels are either:
 - Much brighter.
 - Much darker.
 - Similar.



- Pixels are either:
 - Much brighter.
 - Much darker.
 - Similar.

- Represent ring as a ternary vector.
- Classify vectors using segment test.

Train a classifier

- Decision tree classifiers are very efficient.
- Ask: "What is the state of pixel x?"
- Question splits list in to 3 sublists.
- Query each sublist.
- Recurse until list contains all features or all non features.
- Choose questions to minimize entropy (ID3).
- Use questions on new feature.
- Works for any N.

Output C++ code

A long string of nested if-else statements:

երու [հետի լեկ դերգերին ակերգերին ակերգերին երկերությունը երկերերին երկերությունները երկերերությունը երկերերութ
ու գոլիային հետությունը հետությունը։ Հայ գործությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետություն
յլու, ու ային ու ային ու ային ու այդերաներ ային ային ային ային անեն ու ային ու ային առանին անգայի
հեռույին եւ եղալին երիկեն ույլով՝ են ույլին երիրորդի հեղիրին երիրորդի արդերի
վերությունը են երանգորին որոնդին անդաներությունները։ Անդաներությունները են երանդին են ե
շոր՝ կլիլին հետութեգլիլին հետութեգրին ներելու գրելին հետություններ։
սին շեղին հորոնես շեղին հեղկին հեղինին ներկին հեղինին երկին հեղերին։
կին ներգին են գլիկին ես վերերգլին եսլ գլիկումը կին անհես երերությունը։ Մին են երգրվել են երերերգին են գլիներգլին են անհես երերությունը։
فالأخف والأفقط الأفقار الأقف والزائد ومرازقه والأقف والأفق والمرافقة والأفق والأفاقي والأفريد
ոլ Գտգլին՝ Գտուգլին՝ Գտգլին օգնիզգին տգլին տղի տղի տերին որինին տորին պ

... which continues for 2 more pages.

. . .

How FAST? (very)

Detector	Set 1		Set 2	
	Pixel rate (MPix/s)	%	MPix/s	%
FAST $n = 9$	188	4.90	179	5.15
FAST $n = 12$	158	5.88	154	5.98
Original FAST ($n = 12$)	79.0	11.7	82.2	11.2
SUSAN	12.3	74.7	13.6	67.9
Harris	8.05	115	7.90	117
Shi-Tomasi	6.50	142	6.50	142
DoG	4.72	195	5.10	179

- 3.0GHz Pentium 4
- Set 1: 992×668 pixels.
- set 2: 352×288 (quarter-PAL) video.
- Percentage budget for PAL, NTSC, DV, 30Hz VGA.

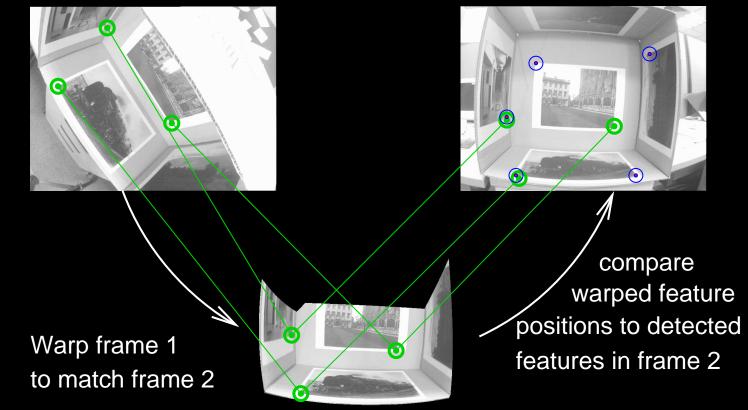
Is it any good?

Repeatability

Is the same real-world 3D point detected from multiple views?

Detect features in frame 2

Detect features in frame 1



Repeat for all pairs in a sequence

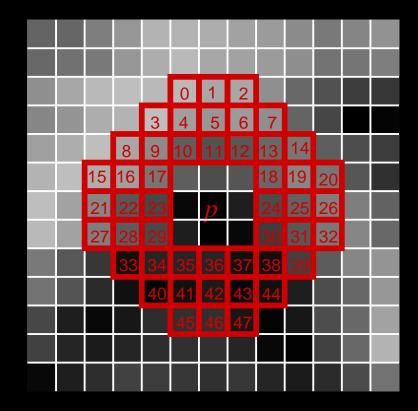
FAST-ER: Enhanced Repeatability

• Define feature detector as:

A decision tree which detects points with a high repeatability.

- To evaluate repeatability:
 - 1. Detect features in all frames.
 - 2. Compute repeatability.
- That is hard to optimize! Optimize tree using simulated-annealing.
- Use more pixels than FAST.

FAST-ER: Enhanced Repeatability



• Use more pixels than FAST.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

- R =Repeatability.
- N = Number of detected features.
- S =Size of tree.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R =Repeatability.

- N = Number of detected features.
- S =Size of tree.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R = Repeatability. N = Number of detected features. S = Size of tree.

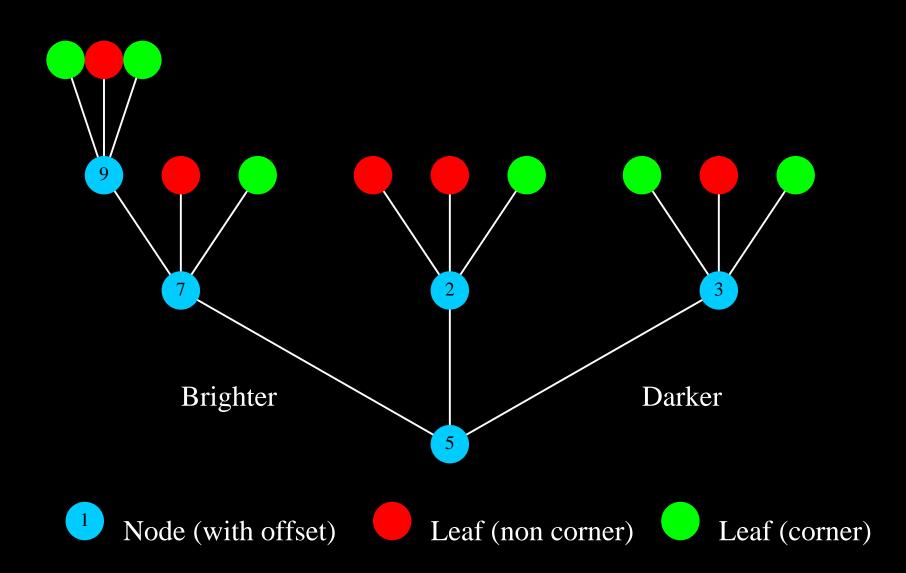
- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

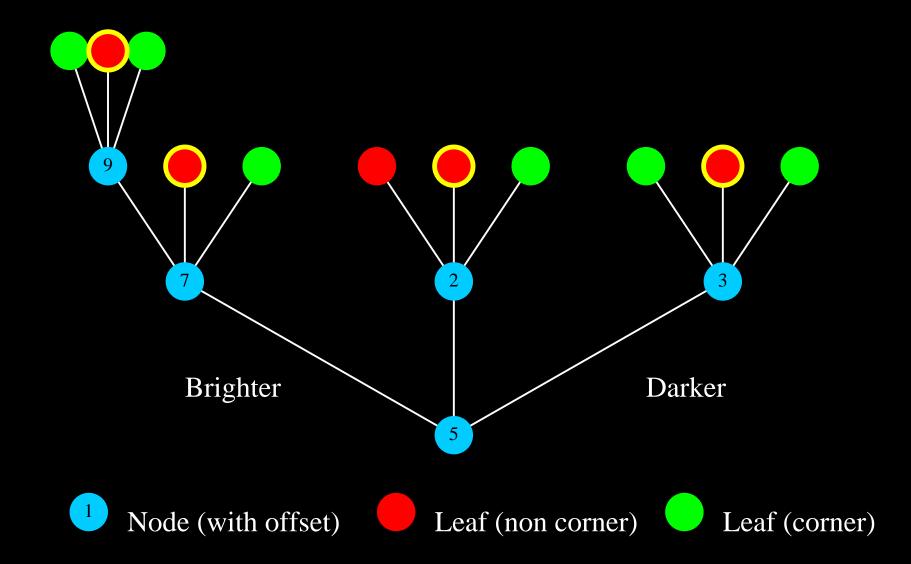
$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R = Repeatability. N = Number of detected features. S = Size of tree.

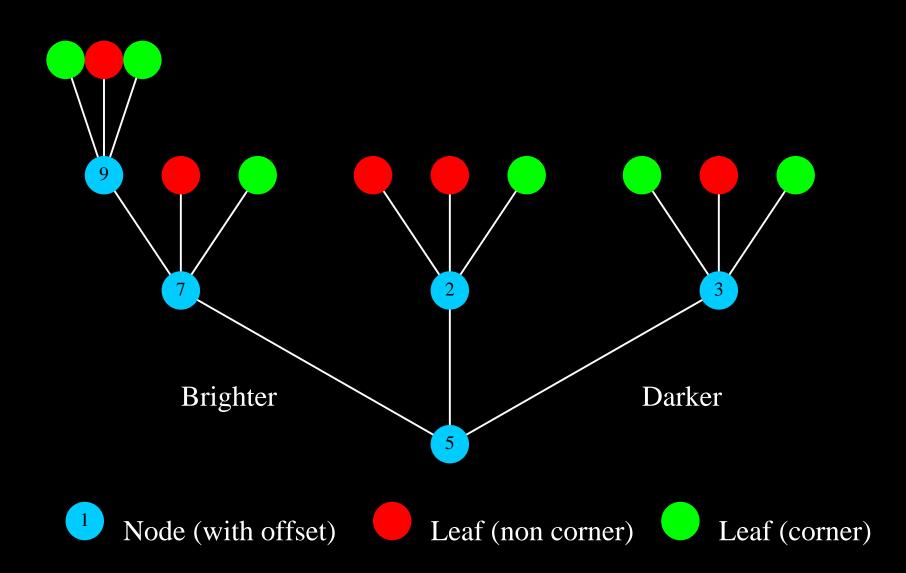
Operations



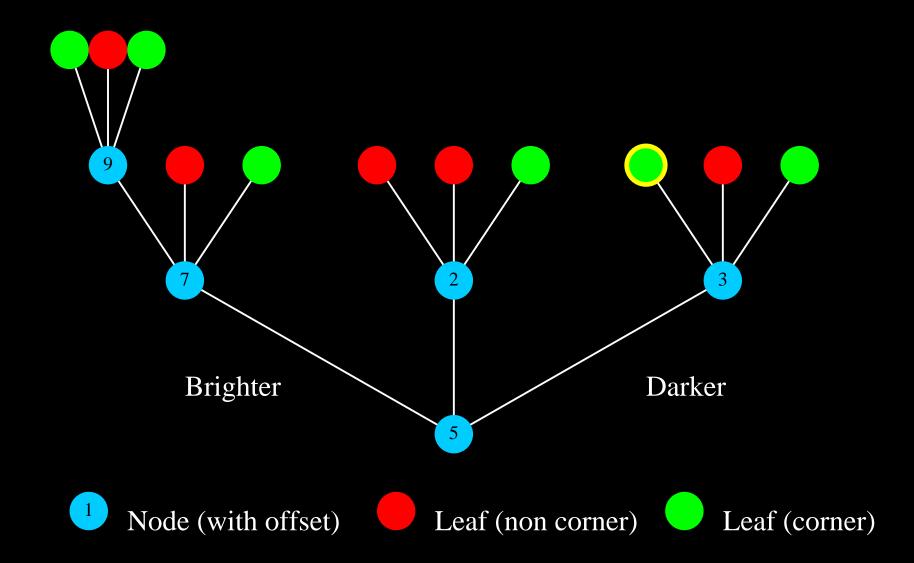
Operations 'Similar' leaf nodes are constrained.



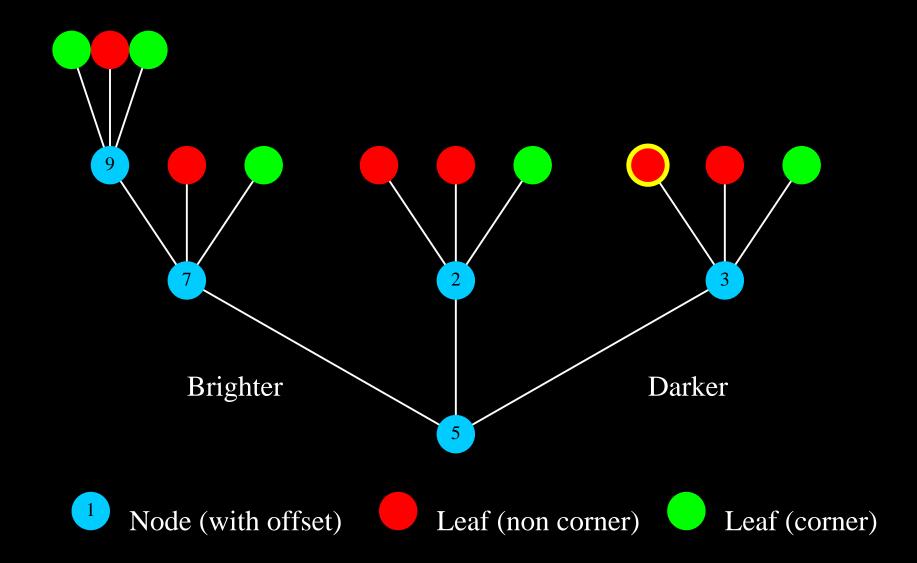
Operations



Operations Select a random node. If node is a leaf:

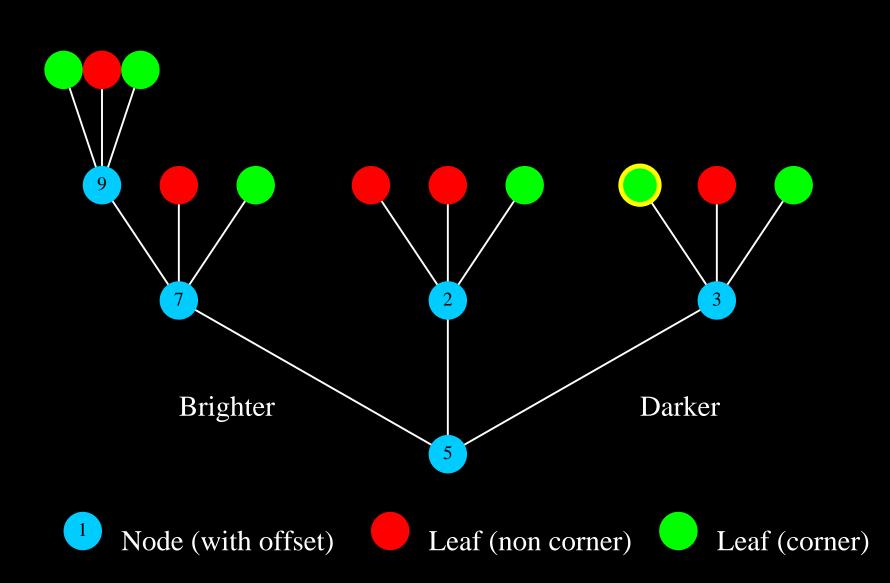


Operations flip the class (if possible), ...

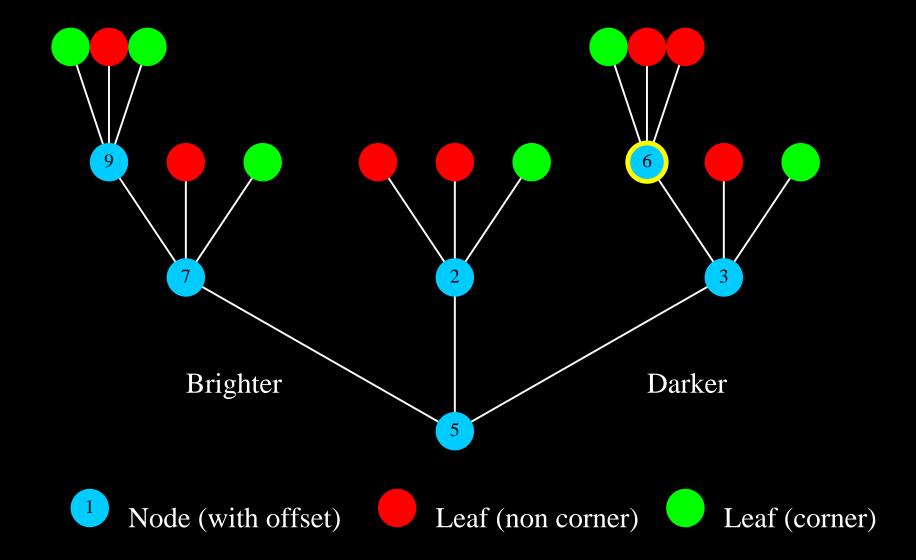


Operations

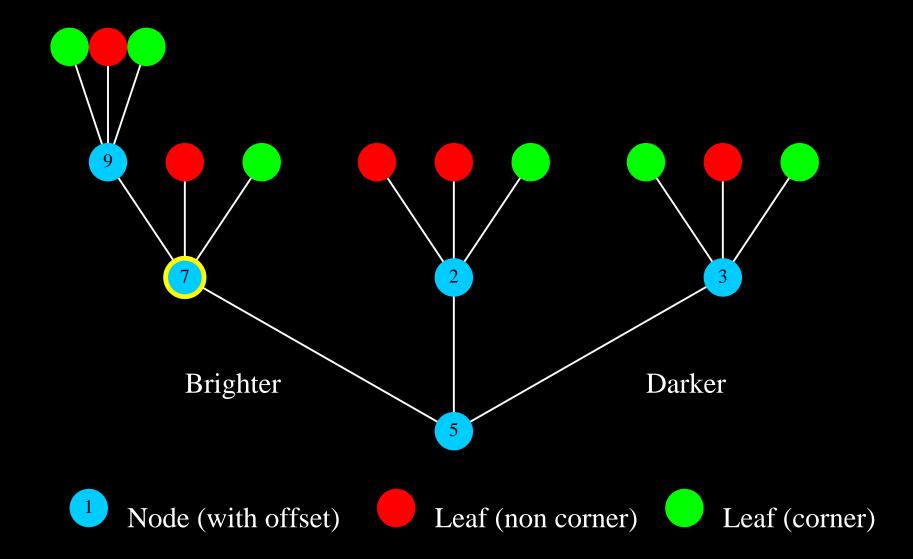
... or ...



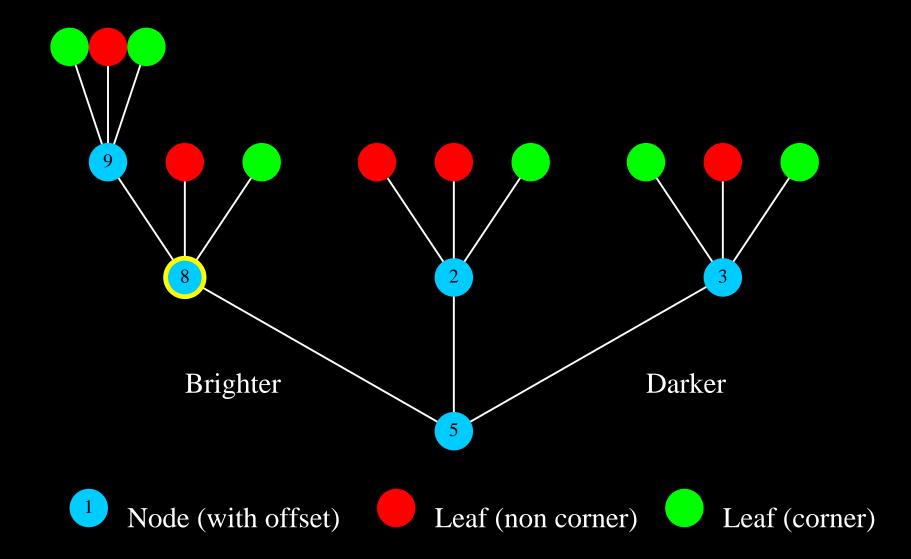
Operations grow a random subtree.



Operations If node is a non-leaf:

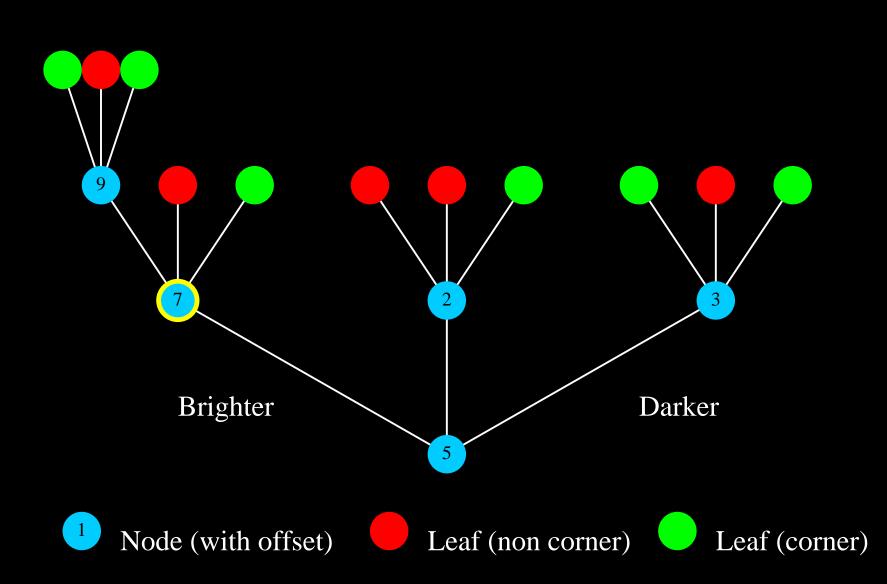


randomize the offset, ...

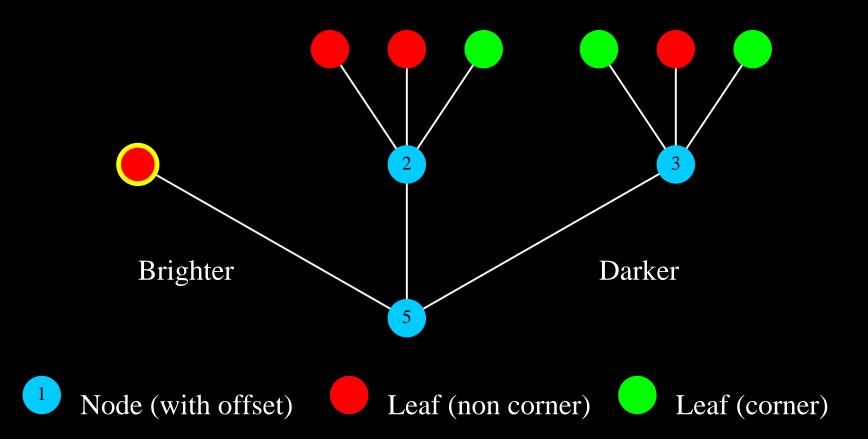


Operations

... or ...

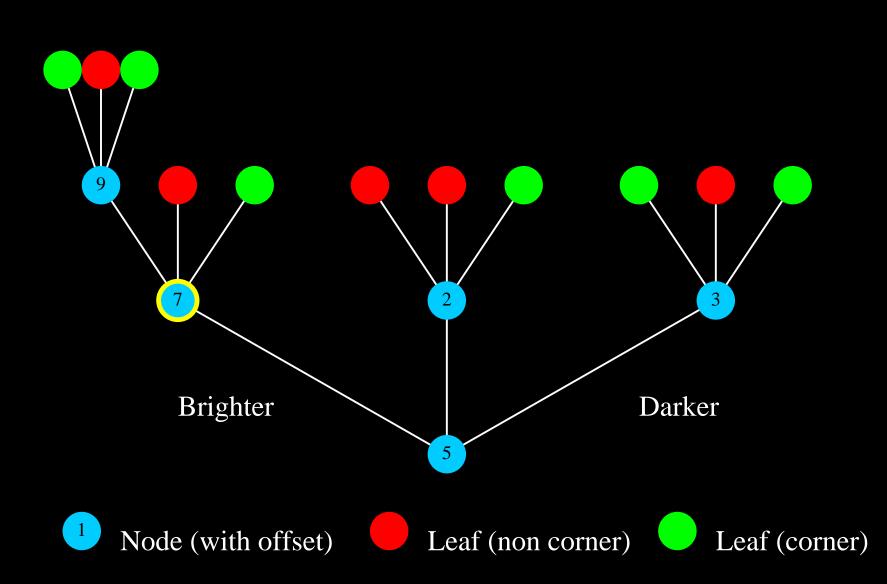


Operations replace node with a leaf, ...



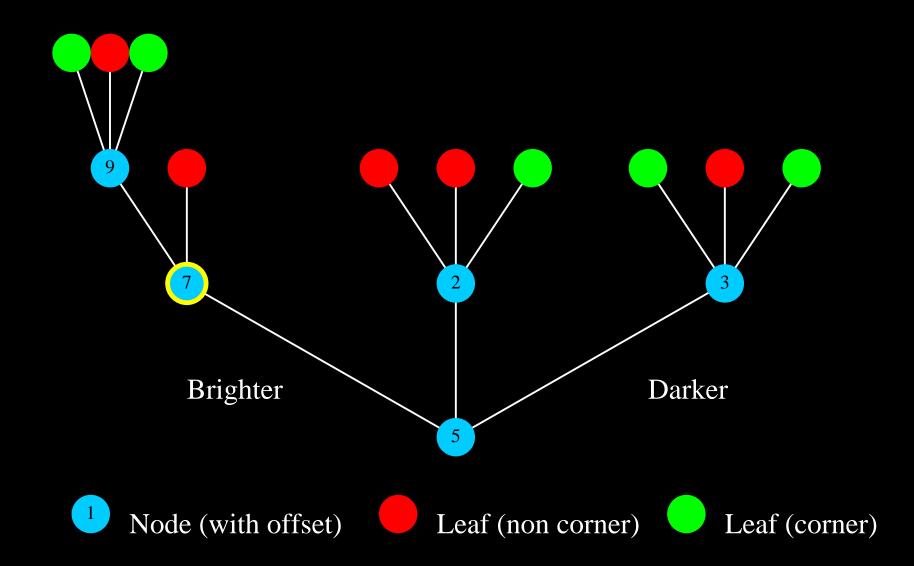
Operations

... or ...

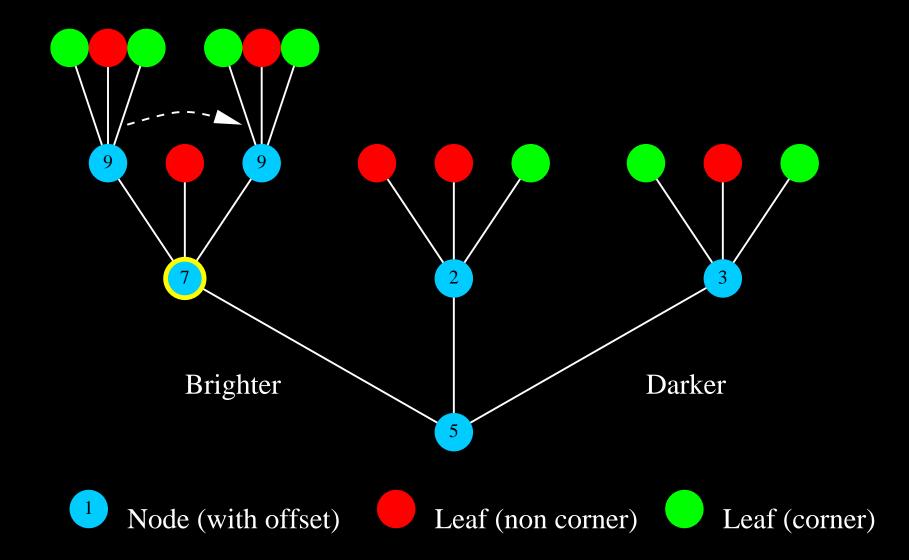


Operations

delete one subtree



and replace it with a copy of another subtree.



Reducing the burden on the optimizer

Corners should be invariant to:

- Rotation.
- Reflection.
- Intensity inversion.

There are 16 combinations:

- 4 simple rotations (multiples of 90°).
- 2 reflections.
- 2 intensity inversions.

Run the detector in *all* combinations.

Iteration scheme

For 100,000 iterations:

- 1. Randomly modify tree.
- 2. Compile directly to machine code.
- 3. Detect features.
- 4. Compute repeatability.
- 5. Evaluate cost.
- 6. Keep the modification if:

$$e^{\frac{\text{oldcost-cost}}{\text{temp}}} > \text{rand}(0,1)$$

7. Reduce the temperature. Now repeat that 200 times.

Training data for repeatability

- Change in scale.
- Mostly affine warping.
- Varied texture.

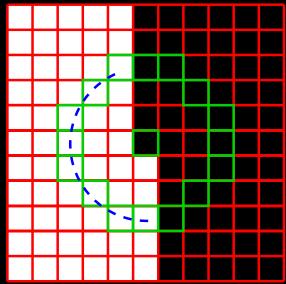
Results

Comparisons

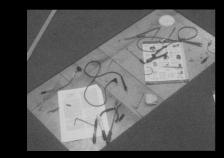
- FAST detectors
 - \circ Which N is best?
 - Which of the 200 FAST-ER detectors is best?
- Other detectors
 - Harris
 - Shi-Tomasi
 - DoG (Difference of Gaussians)
 - Harris-Laplace
 - SUSAN
- What parameters should these detectors use?

Comparisons

- FAST detectors
 - \circ Which N is best?
 - Which of the 200 FAST-ER detectors is best?
- Other detectors
 - Harris
 - Shi-Tomasi
 - DoG (Difference of Gaussians)
 - Harris-Laplace
 - SUSAN
- What parameters should these detectors use?



Results: repeatability curves



Detector	AUR					
FAST-ER	1313.6	-	1			
FAST-9	1304.57		0.8			
DoG	1275.59	ability	0.6			
Shi & Tomasi	1219.08	Repeatability	AUR 0.4			
Harris	1195.2	Re	0.2			
Harris-Laplace	1153.13		0			
FAST-12	1121.53		0 500 1000 1500 2000 Corners per frame			
SUSAN	1116.79					
Random	271.73					

How FAST? (very)

Detector	Set 1	Set 2		
	Pixel rate (MPix/s)	%	MPix/s	%
FAST $n = 9$	188	4.90	179	5.15
FAST $n = 12$	158	5.88	154	5.98
Original FAST ($n = 12$)	79.0	11.7	82.2	11.2
FAST-ER	75.4	12.2	67.5	13.7
SUSAN	12.3	74.7	13.6	67.9
Harris	8.05	115	7.90	117
Shi-Tomasi	6.50	142	6.50	142
DoG	4.72	195	5.10	179

- 3.0GHz Pentium 4
- Set 1: 992×668 pixels.
- set 2: 352×288 (quarter-PAL) video.
- Percentage budget for PAL, NTSC, DV, 30Hz VGA.

Conclusions on FAST

- FAST is very fast
 - And very repeatable.
- FAST-ER is even more repeatable.
- Source code is available:

http://mi.eng.cam.ac.uk/~er258/work/fast.html

Object Detection

Object detection

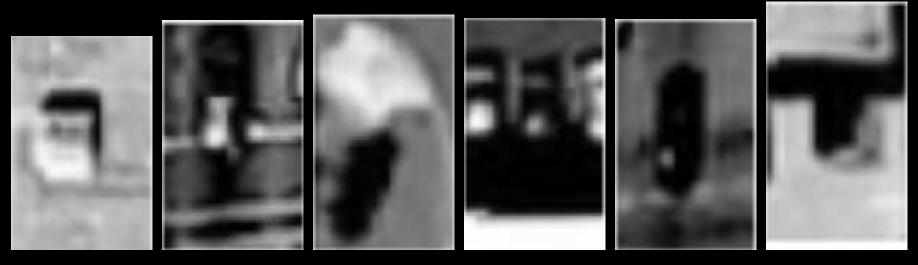
Target detection

Traffic analysis

Damian Eads, Edward Rosten, David Helmbold

Object detection: difficulties

Which ones are cars?



- Problem is unstructured Image $\rightarrow \{(x_1, y_1), (x_2, y_2), \cdots \}$
- Number of objects unknown a priori
- Not a fixed set of labels

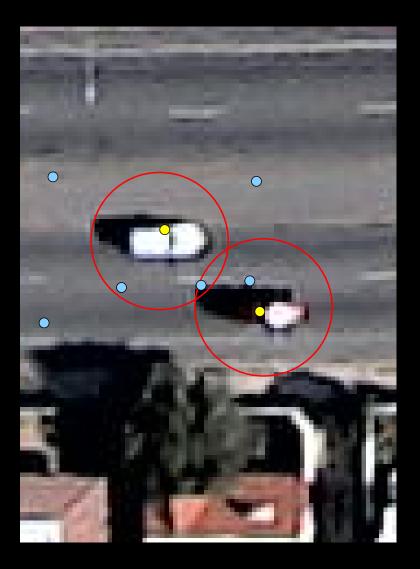
What is a detection anyway?

- 1. Not pixels! 50% of pixels on all of the objects is not the same as all of the pixels on 50% of the objects.
- 2. It depends...

Measures of performance

- Identification:
 Within boundary
- Tracking
 - Nearby, but with unique assignment
- Counting
 - Unique assignment
 - Within radius of sliding window

Measures of performance

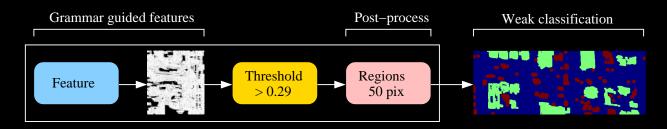


- Identification:
 Within boundary
- Tracking
 - Nearby, but with unique assignment
- Counting
 - Unique assignment
 - Within radius of sliding window

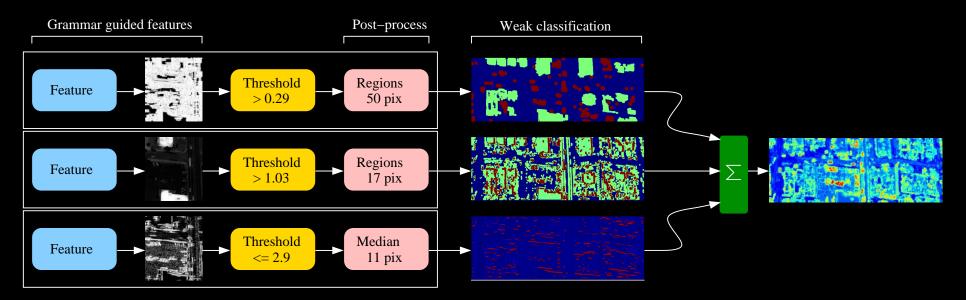
Measures of performance

- Identification:
 Within boundary
- Tracking
 - Nearby, but with unique assignment
- Counting
 - Unique assignment
 - Within radius of sliding window

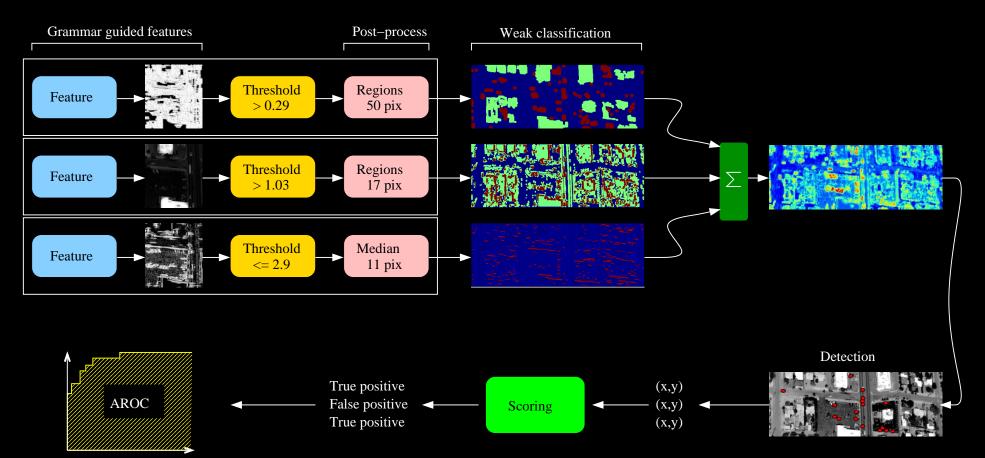
System layout



System layout

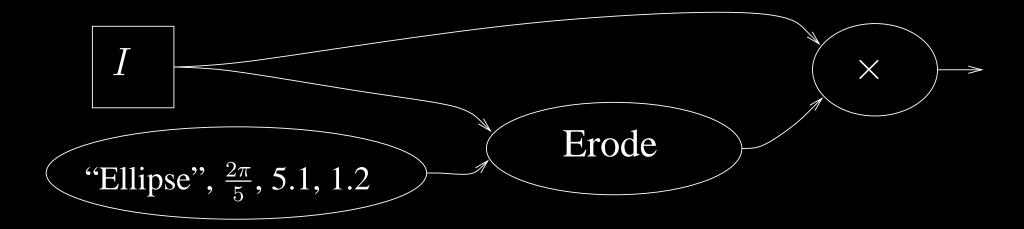


System layout



Feature extraction

- Features are small image processing programs.
- Stochastic generative grammar for making programs
- Composed of basic operators: morphology, percentiles, Gabor filters, Haar-like features, edges, ...
- Combined using: addition, subtraction, multiplication, sigmoiding, ...



Feature grammars

- A grammar consists of *productions* $P \rightarrow A|B$
- Productions are expanded stochastically:
- P can be turned into A or B
- *P* is non-terminal
- A and B are *terminal*
- Non-terminals expanded until only terminals remain
- Expansion rules have domain expertise built in
- Intelligent sampling of feature space

Feature $(x) \rightarrow \text{Binary}(\text{Unary}(x), \text{Unary}(x)) | \text{Unary}(x)$ $\text{Unary}(x) \rightarrow x | \text{Erode}(x, \text{RandomSE}())$ $\text{Binary}(x, y) \rightarrow \text{Add}(x, y) | \text{Multiply}(x, y)$ $\text{RandomSE}() \rightarrow \text{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))$

f(x) = Feature(x)

f(x) = Binary(Unary(x), Unary(x))

 $\begin{array}{rcl} \mbox{Feature}(x) & \to & \mbox{Binary}(\mbox{Unary}(x),\mbox{Unary}(x)) \mid \mbox{Unary}(x) \\ & \mbox{Unary}(x) & \to & x \mid \mbox{Erode}(x,\mbox{RandomSE}()) \\ & \mbox{Binary}(x,y) & \to & \mbox{Add}(x,y) \mid \mbox{Multiply}(x,y) \\ & \mbox{RandomSE}() & \to & \mbox{Ellipse}(\mbox{$\mathcal{U}(0,\pi)$},\ \mbox{$\mathcal{U}(1,10)$},\ \mbox{$\mathcal{U}(1,10)$}) \end{array}$

f(x) = Binary(Unary(x), Erode(x, RandomSE()))

 $\begin{array}{rcl} \mbox{Feature}(x) & \to & \mbox{Binary}(\mbox{Unary}(x),\mbox{Unary}(x)) \mid \mbox{Unary}(x) \\ \mbox{Unary}(x) & \to & x \mid \mbox{Erode}(x,\mbox{RandomSE}()) \\ \mbox{Binary}(x,y) & \to & \mbox{Add}(x,y) \mid \mbox{Multiply}(x,y) \\ \mbox{RandomSE}() & \to & \mbox{Ellipse}(\mbox{$\mathcal{U}(0,\pi)$},\mbox{$\mathcal{U}(1,10)$},\mbox{$\mathcal{U}(1,10)$}) \end{array}$

 $f(x) = \text{Binary}(\text{Unary}(x), \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))$

 $\begin{array}{rcl} \mbox{Feature}(x) & \to & \mbox{Binary}(\mbox{Unary}(x),\mbox{Unary}(x)) \mid \mbox{Unary}(x) \\ \mbox{Unary}(x) & \to & x \mid \mbox{Erode}(x,\mbox{RandomSE}()) \\ \mbox{Binary}(x,y) & \to & \mbox{Add}(x,y) \mid \mbox{Multiply}(x,y) \\ \mbox{RandomSE}() & \to & \mbox{Ellipse}(\mathcal{U}(0,\pi),\ \mathcal{U}(1,10),\ \mathcal{U}(1,10)) \end{array}$

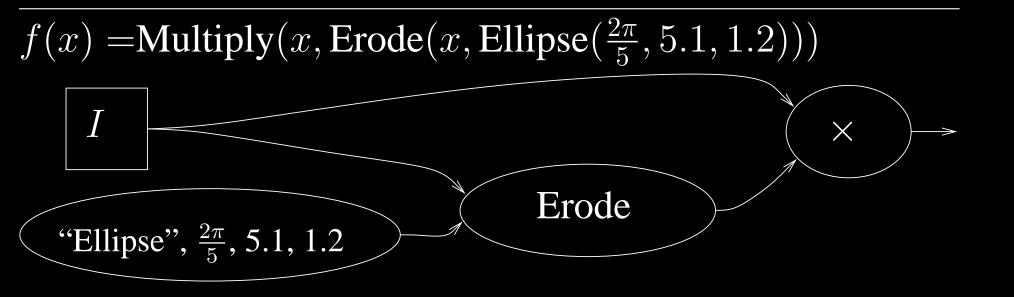
 $f(x) = \text{Binary}(x, \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))$

 $\begin{array}{rcl} \mbox{Feature}(x) & \to & \mbox{Binary}(\mbox{Unary}(x),\mbox{Unary}(x)) \mid \mbox{Unary}(x) \\ \mbox{Unary}(x) & \to & x \mid \mbox{Erode}(x,\mbox{RandomSE}()) \\ \mbox{Binary}(x,y) & \to & \mbox{Add}(x,y) \mid \mbox{Multiply}(x,y) \\ \mbox{RandomSE}() & \to & \mbox{Ellipse}(\mathcal{U}(0,\pi),\ \mathcal{U}(1,10),\ \mathcal{U}(1,10)) \end{array}$

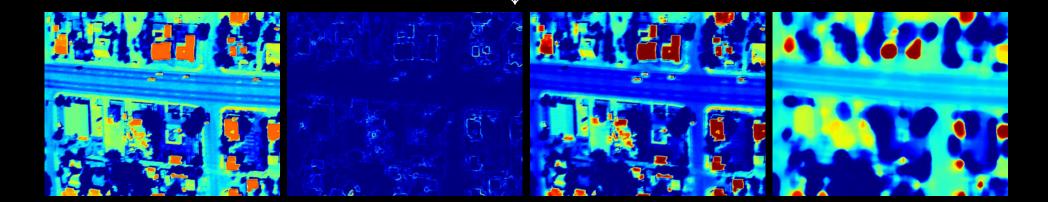
f(x) =Multiply $(x, \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))$

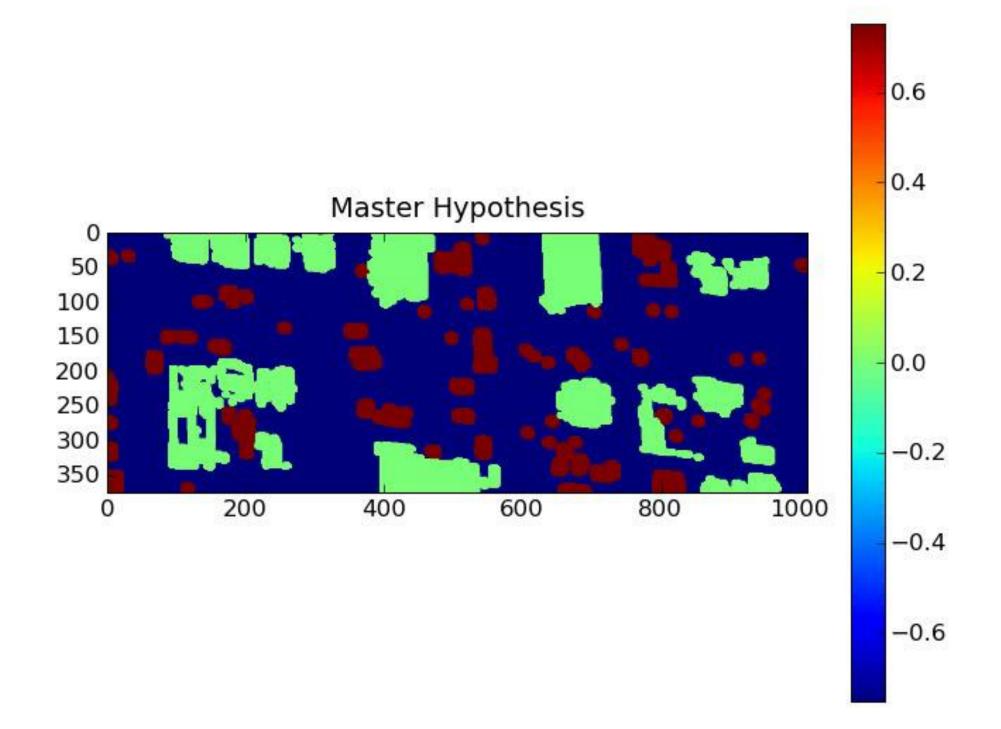
Feature
$$(x) \rightarrow \text{Binary}(\text{Unary}(x), \text{Unary}(x)) | \text{Unary}(x)$$

Unary $(x) \rightarrow x | \text{Erode}(x, \text{RandomSE}())$
Binary $(x, y) \rightarrow \text{Add}(x, y) | \text{Multiply}(x, y)$
RandomSE $() \rightarrow \text{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))$



Some random features

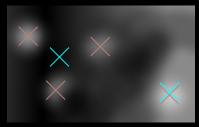




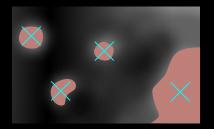
Turning pixels into objects



• Large local maxima Choice of pre-smoothing radius



• KDE on large local maxima Also kernel size

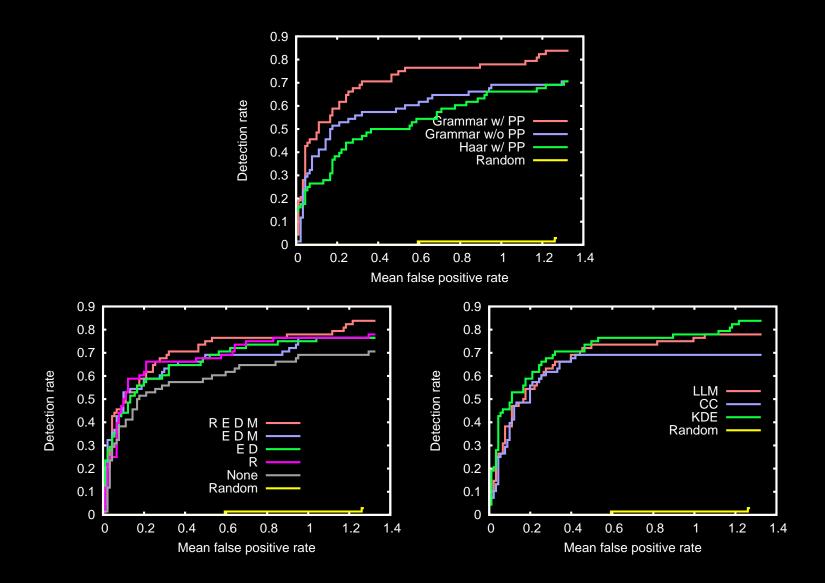


Connected components Choice of threshold

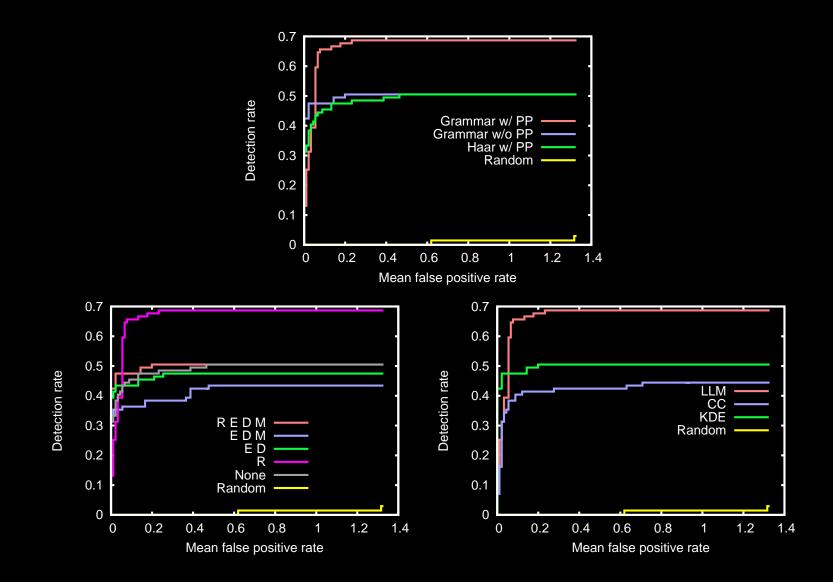
Optimize over data not used for boosting.

Results

Results: Target detection



Results: Tracking



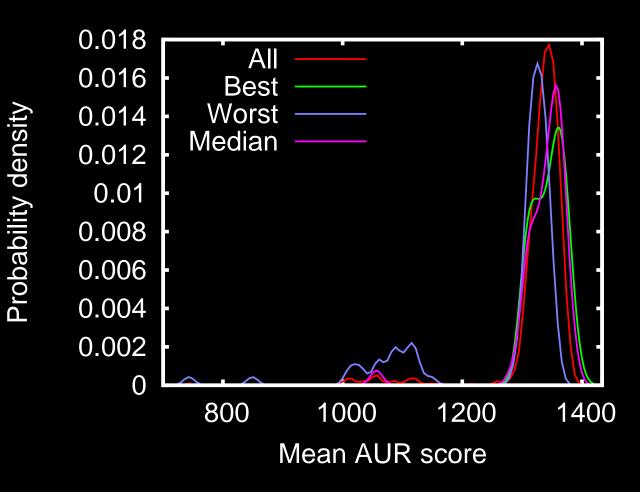
Conclusions

- New features: Grammar-guided features
- Training against scoring measures

http://users.soe.ucsc.edu/~eads/software.shtml

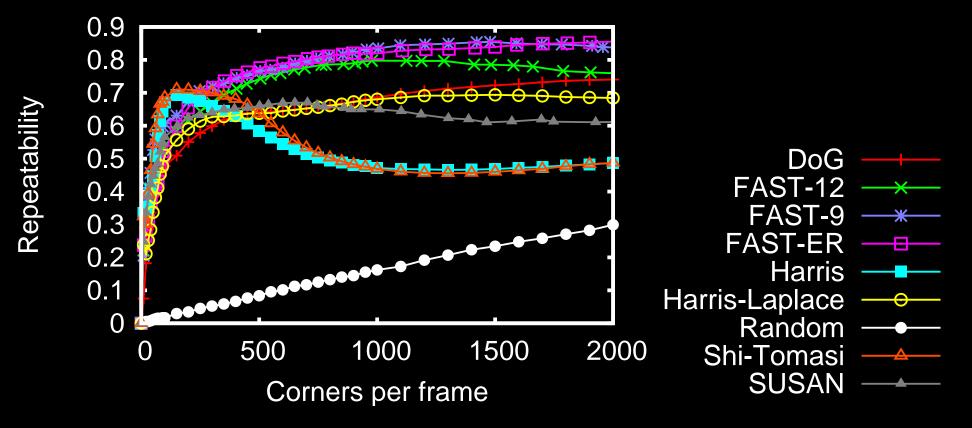
More results

Sensitivity to w_i



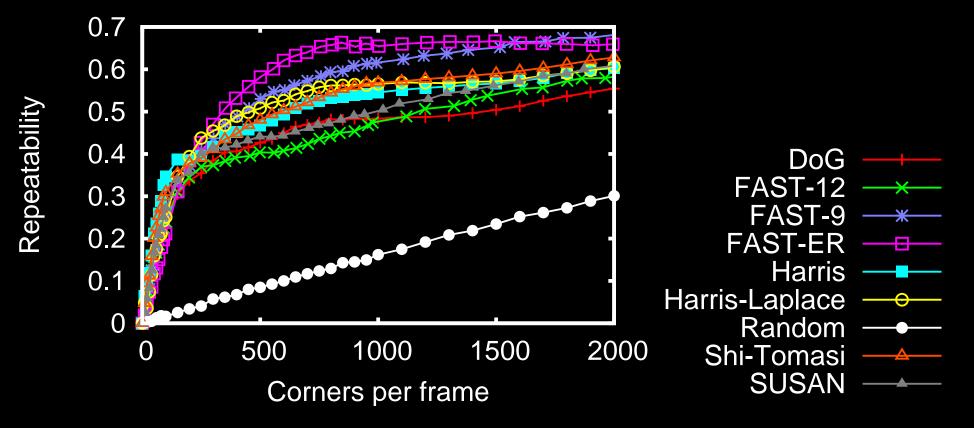
Results: Perspective (box) dataset

Box dataset



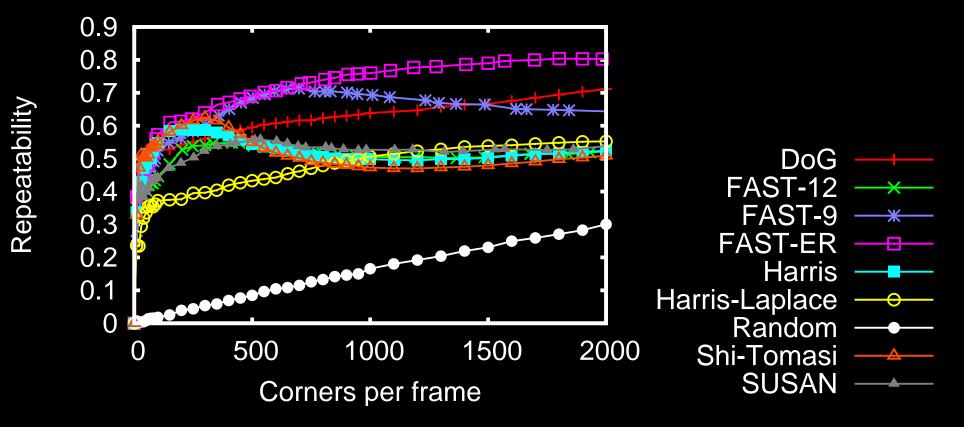
Results: Geometric dataset

Maze dataset



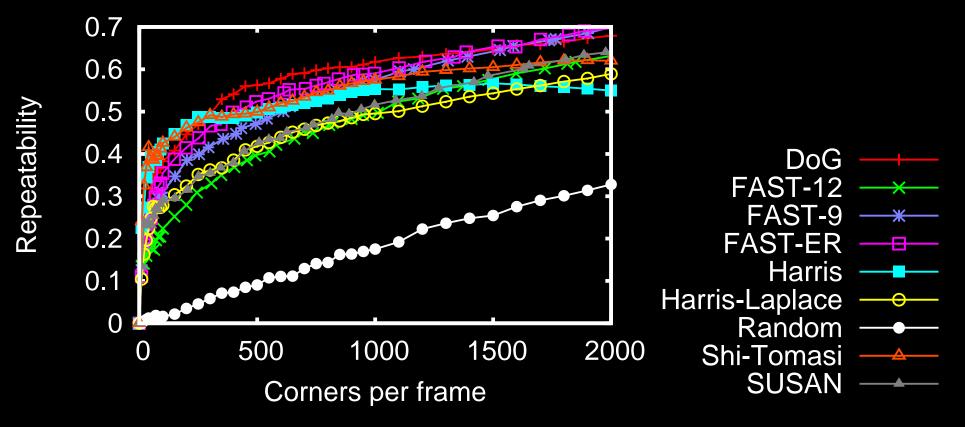
Results: Bas-relief dataset

Bas-relief dataset



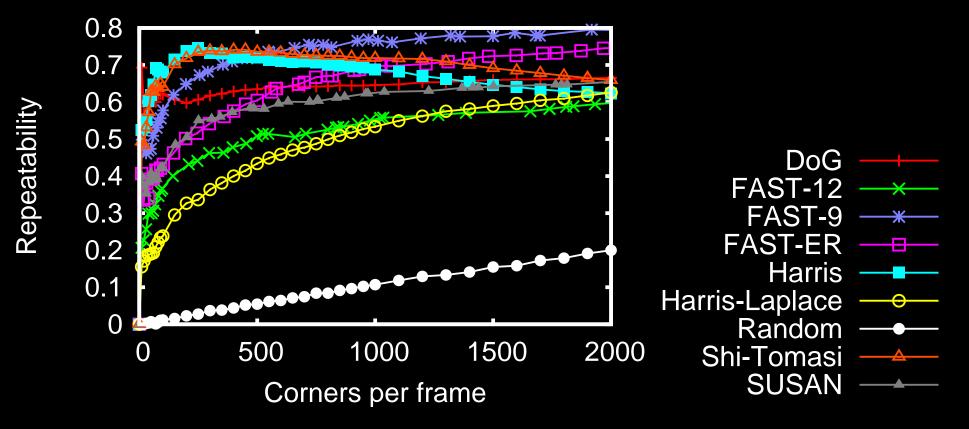
Results: Scale and rotation (bark) dataset

Bark dataset



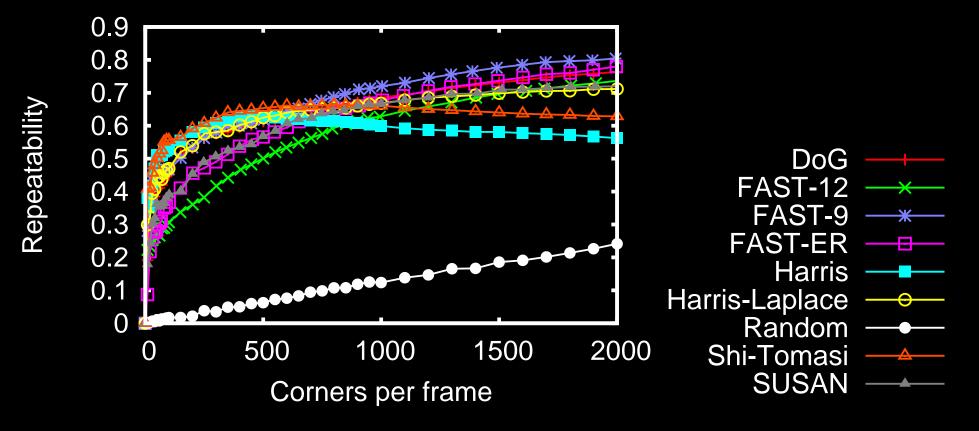
Results: Blur (bikes) dataset

Bikes dataset



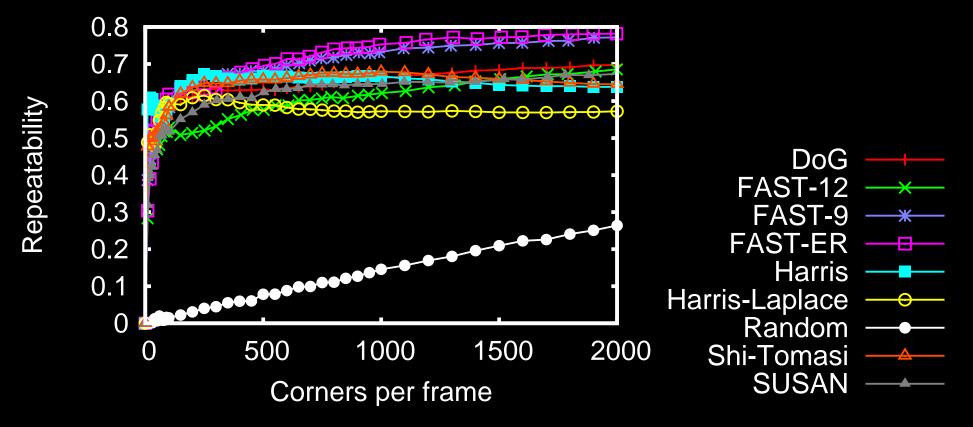
Results: Scale and rotation (boat) dataset

Boat dataset



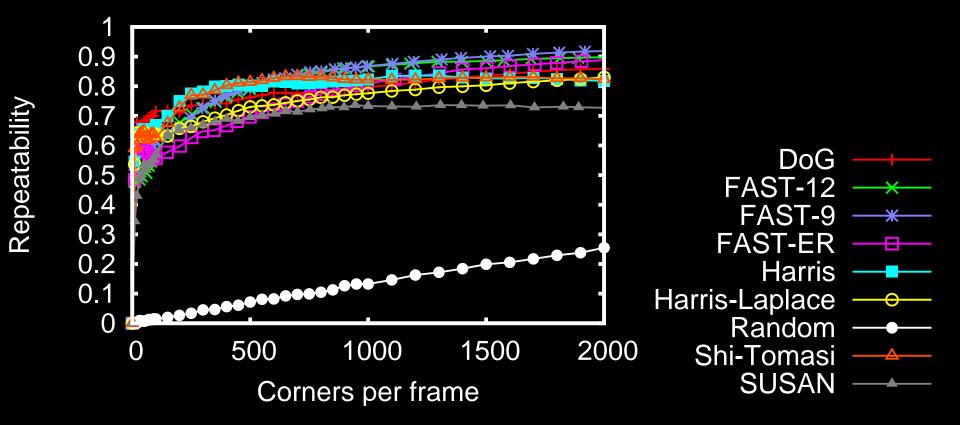
Results: Perspective (graffiti) dataset

Graffiti dataset



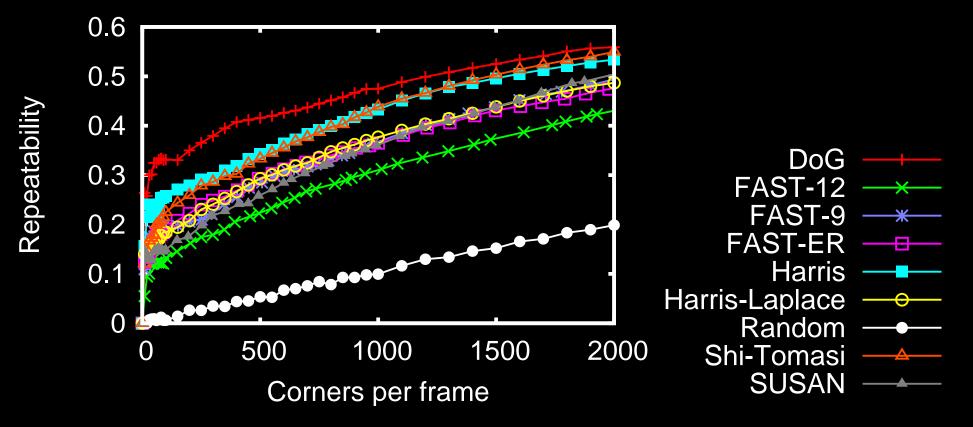
Results: Lighting dataset

Leuven dataset



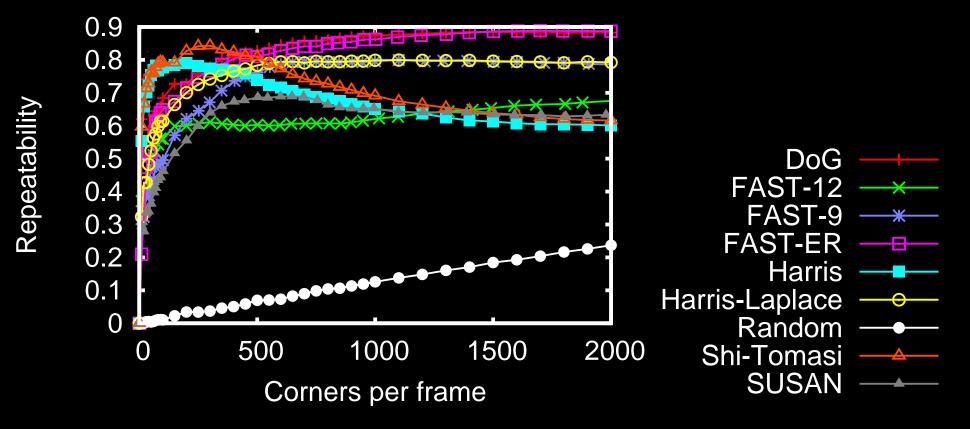
Results: Blur (trees) dataset

Trees dataset



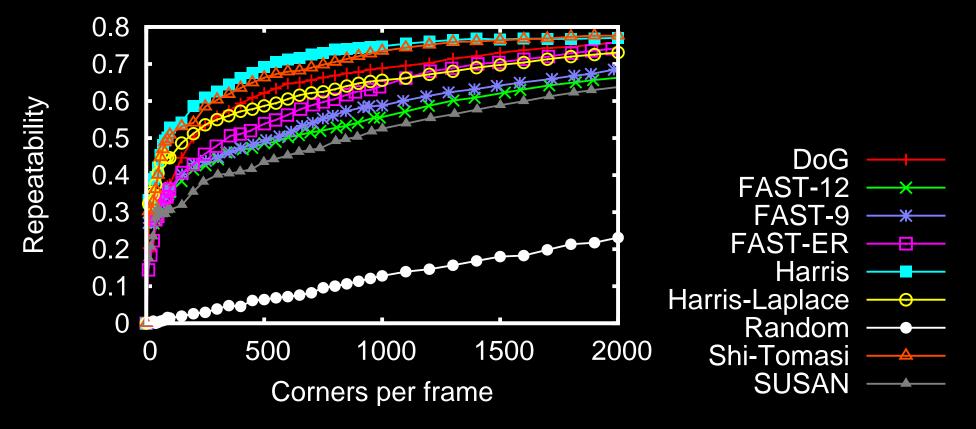
Results: JPEG compression dataset

UBC dataset



Results: Perspective (wall) dataset

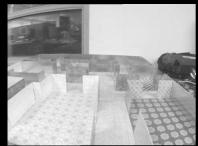
Wall dataset



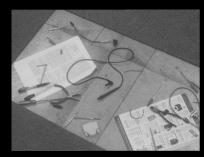
Evaluation: Datasets (3D Models)

14 images:

15 images:



8 images:



Evaluation: Homographies

6 images per set:

