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Optimizing the right thing
Two examples:

1. Corner detection

2. Object detection

What are they and how do you optimize them?



What is corner detection?
Useful for:

• 2D tracking, 3D tracking, SLAM, object recognition,
etc.

• Visually ‘salient’
features.

• Localized in 2D.

• Sparse.

• High ‘information’
content.

• Repeatable between
images.

Edward Rosten, Reid Porter, Tom Drummond



The segment-test detector



The segment-test detector
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The segment-test detector
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Contiguous arc ofN or more pixels:

• All much brighter thanp (brighter thanp + t).

or

• All much darker thanp (darker thanp − t).



FAST feature detection
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FAST feature detection

p

• Pixels are either:
◦ Much brighter.
◦ Much darker.
◦ Similar.

• Represent ring as a
ternary vector.

• Classify vectors using
segment test.



Train a classifier
• Decision tree classifiers are very efficient.

• Ask: “What is the state of pixelx?”

• Question splits list in to 3 sublists.

• Query each sublist.

• Recurse until list contains all features or all non
features.

• Choose questions to minimize entropy (ID3).

• Use questions on new feature.

• Works forany N .



Output C++ code
A long string of nested if-else statements:

. . . which continues for 2 more pages.
for(y = 3 ; y < i.size ().y - 3; y++)

for(x=0; x < i.size ().x;x++)

{

centre = image[y][x];

if(image[y-3][x] > centre + threshold)

if(image[y+3][x+1] > centre + threshold)

if(...

else

...



How FAST? (very)
Detector Set 1 Set 2

Pixel rate (MPix/s) % MPix/s %
FASTn = 9 188 4.90 179 5.15
FASTn = 12 158 5.88 154 5.98
Original FAST (n = 12) 79.0 11.7 82.2 11.2
SUSAN 12.3 74.7 13.6 67.9
Harris 8.05 115 7.90 117
Shi-Tomasi 6.50 142 6.50 142
DoG 4.72 195 5.10 179

• 3.0GHz Pentium 4

• Set 1:992 × 668 pixels.

• set 2:352 × 288 (quarter-PAL) video.

• Percentage budget for PAL, NTSC, DV, 30Hz VGA.



Is it any good?



Repeatability
Is the same real-world 3D point detected from multiple
views?

Detect features in frame 2Detect features in frame 1

positions to detected

to match frame 2
Warp frame 1

features in frame 2

warped feature
compare 

Repeat for all pairs in a sequence



FAST-ER: Enhanced Repeatability
• Define feature detector as:

A decision tree which detects
points with a high repeatability.

• To evaluate repeatability:
1. Detect features in all frames.
2. Compute repeatability.

• That is hard to optimize!
Optimize tree using simulated-annealing.

• Use more pixels than FAST.



FAST-ER: Enhanced Repeatability

• Use more pixels than FAST.

p

4140

45 46 47

4342

3633

27

21

15 16

8 9

17

3

0 1 2

654 7

1110 12 13 14

18 19 20

262524

30 31 32

39

44

38373534

2928

22 23



Cost function
1. Higher repeatability is better.

2. Every pixel is a feature⇒ repeatability is 100%.

3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

cost = (1 + wrR
−2)(1 + wnN

2)(1 + wsS
2)

R = Repeatability.
N = Number of detected features.
S = Size of tree.
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Operations
‘Similar’ leaf nodes are constrained.
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Operations
Select a random node. If node is a leaf:
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Operations
flip the class (if possible), . . .
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Operations
. . . or . . .
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Operations
grow a random subtree.

9

Leaf (non corner) Leaf (corner)

DarkerBrighter

Node (with offset)

2

5

3

1

7

6



Operations
If node is a non-leaf:
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Operations
randomize the offset, . . .

9

Leaf (non corner) Leaf (corner)

DarkerBrighter

Node (with offset)

2

5

3

1

78



Operations
. . . or . . .
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Operations
replace node with a leaf, . . .
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Operations
. . . or . . .
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Operations
delete one subtree
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Operations
and replace it with a copy of another subtree.
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Reducing the burden on the optimizer
Corners should be invariant to:

• Rotation.

• Reflection.

• Intensity inversion.

There are 16 combinations:

• 4 simple rotations (multiples of 90◦).

• 2 reflections.

• 2 intensity inversions.

Run the detector inall combinations.



Iteration scheme
For 100,000 iterations:

1. Randomly modify tree.

2. Compile directly to machine code.

3. Detect features.

4. Compute repeatability.

5. Evaluate cost.

6. Keep the modification if:

e
oldcost−cost

temp > rand(0,1)
7. Reduce the temperature.

Now repeat that 200 times.



Training data for repeatability

• Change in scale.

• Mostly affine warping.

• Varied texture.



Results



Comparisons

• FAST detectors
◦ WhichN is best?
◦ Which of the 200

FAST-ER detectors is best?

• Other detectors
◦ Harris
◦ Shi-Tomasi
◦ DoG (Difference of Gaussians)
◦ Harris-Laplace
◦ SUSAN

• What parameters should these detectors use?
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Results: repeatability curves



Aggregate results
Detector AUR

FAST-ER 1313.6
FAST-9 1304.57
DoG 1275.59
Shi & Tomasi 1219.08
Harris 1195.2
Harris-Laplace 1153.13
FAST-12 1121.53
SUSAN 1116.79
Random 271.73
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How FAST? (very)
Detector Set 1 Set 2

Pixel rate (MPix/s) % MPix/s %
FASTn = 9 188 4.90 179 5.15
FASTn = 12 158 5.88 154 5.98
Original FAST (n = 12) 79.0 11.7 82.2 11.2
FAST-ER 75.4 12.2 67.5 13.7
SUSAN 12.3 74.7 13.6 67.9
Harris 8.05 115 7.90 117
Shi-Tomasi 6.50 142 6.50 142
DoG 4.72 195 5.10 179

• 3.0GHz Pentium 4

• Set 1:992 × 668 pixels.

• set 2:352 × 288 (quarter-PAL) video.

• Percentage budget for PAL, NTSC, DV, 30Hz VGA.



Conclusions on FAST
• FAST is very fast

◦ And very repeatable.

• FAST-ER is even more repeatable.

• Source code is available:

http://mi.eng.cam.ac.uk/~er258/work/fast.html



Object Detection



Object detection
Target detection Traffic analysis

Damian Eads, Edward Rosten, David Helmbold



Object detection: difficulties
Which ones are cars?

• Problem is unstructured
Image→ {(x1, y1), (x2, y2), · · · }

• Number of objects unknowna priori

• Not a fixed set of labels



What is a detection anyway?
1. Not pixels! 50% of pixels on all of the objects is not

the same as all of the pixels on 50% of the objects.

2. It depends...



Measures of performance

• Identification:
◦ Within boundary

• Tracking
◦ Nearby, but with unique

assignment

• Counting
◦ Unique assignment
◦ Within radius of sliding

window



Measures of performance

• Identification:
◦ Within boundary

• Tracking
◦ Nearby, but with unique

assignment

• Counting
◦ Unique assignment
◦ Within radius of sliding

window



Measures of performance

• Identification:
◦ Within boundary

• Tracking
◦ Nearby, but with unique

assignment

• Counting
◦ Unique assignment
◦ Within radius of sliding

window



System layout
Weak classificationPost−processGrammar guided features
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System layout

(x,y)
(x,y)
(x,y)

False positive
True positive

True positive

ScoringAROC

Detection

Weak classificationPost−processGrammar guided features

Feature Threshold
> 0.29

Regions
50 pix

Feature Threshold Regions
17 pix> 1.03

ThresholdFeature Median
11 pix<= 2.9



Feature extraction
• Features are small image processing programs.

• Stochastic generative grammar for making programs

• Composed of basic operators: morphology,
percentiles, Gabor filters, Haar-like features, edges, . . .

• Combined using: addition, subtraction, multiplication,
sigmoiding, . . .

I

“Ellipse”, 2π

5
, 5.1, 1.2

Erode

×



Feature grammars
• A grammar consists ofproductions

P → A|B

• Productions are expanded stochastically:

• P can be turned intoA or B

• P is non-terminal

• A andB areterminal

• Non-terminals expanded until only terminals remain

• Expansion rules have domain expertise built in

• Intelligent sampling of feature space



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) = Feature(x)



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) = Binary(Unary(x), Unary(x))



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) = Binary(Unary(x), Erode(x, RandomSE()))



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) = Binary(Unary(x), Erode(x, Ellipse(2π

5
, 5.1, 1.2)))



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) = Binary(x, Erode(x, Ellipse(2π

5
, 5.1, 1.2)))



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) =Multiply(x, Erode(x, Ellipse(2π

5
, 5.1, 1.2)))



Example
Feature(x) → Binary(Unary(x), Unary(x)) | Unary(x)

Unary(x) → x | Erode(x, RandomSE())
Binary(x, y) → Add(x, y) | Multiply(x, y)

RandomSE() → Ellipse(U(0, π), U(1, 10), U(1, 10))

f(x) =Multiply(x, Erode(x, Ellipse(2π

5
, 5.1, 1.2)))

I

“Ellipse”, 2π

5
, 5.1, 1.2

Erode

×



Some random features

↓





Turning pixels into objects

• Large local maxima
Choice of pre-smoothing radius

• KDE on large local maxima
Also kernel size

• Connected components
Choice of threshold

Optimize over data not used for boosting.



Results



Results: Target detection
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Results: Tracking
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Conclusions
• New features: Grammar-guided features

• Training against scoring measures

http://users.soe.ucsc.edu/~eads/software.shtml









More results



Sensitivity to wi
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Results: Perspective (box) dataset
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Results: Geometric dataset
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Results: Bas-relief dataset
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Results: Scale and rotation (bark)
dataset
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Results: Blur (bikes) dataset
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Results: Scale and rotation (boat) dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y

Corners per frame

Boat dataset

DoG
FAST-12
FAST-9

FAST-ER
Harris

Harris-Laplace
Random

Shi-Tomasi
SUSAN



Results: Perspective (graffiti) dataset
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Results: Lighting dataset
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Results: Blur (trees) dataset
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Results: JPEG compression dataset
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Results: Perspective (wall) dataset
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Evaluation: Datasets (3D Models)
14 images:

15 images:

8 images:



Evaluation: Homographies
6 images per set:
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