
3F6 - Software Engineering and Design

Handout 2

Classes and C++ (I)
With Markup

Ed Rosten

Contents

1. Program Design Using Objects

2. Classes in C++

3. Constructors and Destructors

4. Operator Overloading

5. Data Types

6. Class Derivation

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching

http://mi.eng.cam.ac.uk/~er258/teaching

Classes and C++ (I) 1

Program Design Using Objects

Object-oriented programming requires a new way of thinking

about program design:

1. What classes of objects are present in the problem?

2. What services does each class have to provide?

3. What should happen when a service is requested of an object?

Compare this to procedural programming: instead of breaking

the problem up into data + algorithms, we first break it up into

objects (which contain data and algorithms and use these to

supply services).

Data

Functions

Data

Functions

Data

Functions

Data

Functions

Programs = Functions + Data Programs = Objects

Objects provide abstractions. An object can be used without

any knowledge of how it works. This allows software to be built

from components - just like other forms of engineering system.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Implementing Classes in C++

Earlier we gave the definition of the Date class as:

class Date {

public:

// access functions

int get_day();

int get_month();

int get_year();

// function to set the date

void set_date(int d, int m, int y);

private:

int day;

int month;

int year;

};

This specifies the private data contained in the Date class and

the public interface that it provides. The latter consists of a set

of class member functions (aka operations or methods) that may

be called to operate on instantiated class objects.

Member functions are defined like any other function except that

their names are prepended with the class name and within the

function, all of the class’s data elements are directly accessible.

Classes and C++ (I) 3

int Date::get_day(){

return day;

}

int Date::get_month(){

return month;

}

void Date::set_date(int d, int m, int y){

// check month is 1..12

if(m < 1 || m > 12) Raise_Error();

// check day is 1..31

if(d < 1 || d > 31) Raise_Error();

// if April, May, September, November

if(m==4 || m==6 || m==9 || m==11){

if(d > 30) Raise_Error();

}

// if February use leap year rules

if(m==2){

if((y%4==0)^(y%100==0)^(y%400==0)){

if(d > 29) Raise_Error();

} else {

if(d > 28) Raise_Error();

}

}

// if we got here d,m,y are OK

day = d;

month = m;

year = y;

}

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Putting an application together

// date.h

class Date {
public:
 ...
private:
 ...
};

// date.cc

include "date.h"

int Date::get_day(){
 return day;
}
...

// application.cc

#include "date.h"

int main(){
 Date today;
 ...
 today.set_date(1,11,2007);

Classes and C++ (I) 5

Changing the Implementation

Classes allow the interface and implementation of a system com-

ponent to be decoupled.

Debugging object-oriented programs should be easier. If some-

thing goes wrong with the data in a class, the culprit must lie in

the class member functions.

There is also another benefit: since the implementation details

are hidden, we can change the internal data representation of a

class while maintaining the same public interface to the rest of

the program.

Eg. we might want to change the implementation of the date
class:

class Date {

public:

// access functions

int get_day();

etc as before

private:

int num_days_since_1_1_1900;

};

Programs which use this class would never know that the imple-

mentation had been changed.

Also, additional interface functions can be added to enhance func-

tionality without affecting existing programs.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Constructors and Destructors

Not all of our problems have been solved yet. What happens if

a programmer writes:

Image img; // img is not initialised

img.set_pixel(100,100,255); // write to a random area of memory

The programmer has used the object img before its values have

been initialised.

Constructors provide a mechanism to make sure that objects have

appropriate values that meet the invariants from the moment

they are created.

A constructor is executed when the object is created and it can
be given parameters if required. For example

Image img(200,200); // img is 200 x 200

img.set_pixel(100,100,255); // now safe

Similarly, when we are finished with an image, we have to make

sure that the allocated memory is released. This is achieved using

a destructor.

Classes and C++ (I) 7

class Image {

public:

Image(int w, int h);

~Image();

// functions to access the data

int get_width();

int get_height();

char get_pixel(int x, int y);

void set_pixel(int x, int y, char value);

void save(char * filename);

etc

private:

int width;

int height;

char *pixels;

};

Image::Image(int w, int h) {

width = w; height = h;

pixels = new char[w*h];

}

Image::~Image() {

delete[] pixels;

}

8 Engineering Part IIA: 3F6 - Software Engineering and Design

A Complex Number Class

In engineering applications, it is often useful to deal with complex

numbers. These could be implemented in a class as follows:

class Complex {

public:

// constructor

Complex (float r, float i);

// arithmetic

Complex add(Complex rhs);

Complex subtract(Complex rhs);

Complex multiply(Complex rhs);

Complex divide(Complex rhs);

void set_value(Complex c);

// leave the data members public in this example

float real;

float imaj;

};

Classes and C++ (I) 9

This provides all the basic operations and we can use this to write

code like:

Complex c1(1.5,0);

Complex c2(1.7,1.9);

Complex c3(0,0);

Complex c4(0,0);

c3.set_value(c1.multiply(c2)); // c3=c1*c2

c4.set_value(c1.add(c3)); // c4=c1+c3

cout << "answer is" << c4.real << "+"

<< c4.imag << "i" << endl;

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Operator Overloading

It would be much more convenient if we could write the code

using standard arithmetic symbols with complex numbers so that

the code looks just the same as if we had been using floats.

This can be done in C++ using a feature called operator over-

loading.

class Complex {

public:

// Constructor

Complex(float r, float i);

//arithmetic

Complex operator+(Complex rhs);

Complex operator-(Complex rhs);

Complex operator*(Complex rhs);

Complex operator/(Complex rhs);

// to set the values

Complex operator=(Complex rhs);

// data members

float real;

float imag;

};

Classes and C++ (I) 11

This new version of the Complex class means we can now write

c3 = c1*c2;

c4 = c1+c3;

instead of

c3.set_values(c1.multiply(c2));

c4.set_values(c1.add(c3));

It is also possible to write code to enable the use of

cout << c4 << endl;

This would require code to define the operator << in the context

”ostream << complex” such as

ostream & operator << (ostream& os, Complex& c) {

os << c.real << "+" << c.imag << "i";

return os;

}

12 Engineering Part IIA: 3F6 - Software Engineering and Design

User Defined Data Types

Superficially, all we have achieved by using operator overloading

is that our programs are a bit easier to read. For that reason this

is sometimes referred to as syntactic sugar.

But we have also achieved something further.

If we have some old code that uses floats, that code can be reused

with Complex. For example recall the 1A exercise to solve simul-

taneous equations:

// coeffs of the eqns of form ax + by =c

float a1, b1, c1, a2, b2, c2, x, y;

...

// find the solution using Cramer’s rule

x = (b2*c1-b1*c2)/(a1*b2-a2*b1);

y = (a1*c2-a2*c1)/(a1*b2-a2*b1);

This code can be converted to find solutions to equations with

complex coefficients just by changing the word float to Complex.

This is possible because we made sure our improved class Com-

plex has exactly the same interface as all other kinds of number

in C++.

We have made Complex a fully-fledged data-type with an inter-

face consistent with built-in numerical types.

Classes and C++ (I) 13

Abstract Data Types

The concept number has a well defined interface that can be

implemented by several different types of number (e.g. int, float,

double, Complex).

Thus number is an abstract data type with many possible real-

isations. We can say that float is-a number and Complex is-a

number.

This is a weak kind of is-a relationship. Object oriented lan-

guages like C++ also allow for a much stronger expression of

this relationship using class derivation.

Concrete
Type

Concrete
Type

Concrete
Type

Abstract
Data Type

Concrete
Type

instantiate
objects

instantiate
objects

instantiate
objects

instantiate
objects

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Class Derivation

Suppose we are programming a video processing application such

as an MPEG4 codec for a video camera or an industrial inspection

system.

Problem:

For each image captured from the video camera by the system,

we need to know the time when each image was captured. Unfor-

tunately, there is no place to store this information in our existing

Image class.

Solution 1:

Add a timestamp data member to class Image.

BUT our image class would quickly become cluttered with data

members which were only used in certain circumstances.

Solution 2:

Create a new class VideoFrame with a copy of all the Image

data members and functions and with a timestamp as well.

BUT now we can’t use existing code that works with Image.

Solution 3:

Derive class VideoFrame from class Image.

Classes and C++ (I) 15

class Image {

public:

Image(int w, int h);

~Image();

int get_width();

int get_height();

char get_pixel(int x, int y);

void set_pixel(int x, int y, char val);

void save(char * filename);

etc

private:

int width;

int height;

char *pixels;

};

class VideoFrame : public Image {

public:

VideoFrame(int w, int h, int t);

int get_timestamp();

private:

int timestamp;

};

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Using Derived Classes

We can create a VideoFrame object:

VideoFrame frame(200,200,10);

And then use all the functions in the image class:

frame.save("image.pgm");

We can also use functions in the derived class:

int t = frame.get timestamp();

We can supply a reference (or pointer) to the derived class when

a reference (or pointer) to the base class is needed:

// function prototype

void blur (Image& im);

blur(frame);

Similarly if a function returns a reference (or pointer) to the

derived class, it can be treated as a reference (or pointer) to the

base class.

// function prototype

VideoFrame *get frame from video card();

Image* imptr = get frame from video card();

Classes and C++ (I) 17

Class Derivation

By deriving VideoFrame from Image, the programmer is saying

that:

1. A VideoFrame does everything an Image does

2. It can be used wherever an Image is expected

3. It can do some new things as well

Items 1 and 2 mean that VideoFrame is-an Image. This is the

strong kind of is-a relationship because code designed to work

with Images can be reused for VideoFrames without changing

anything (or even recompiling).

We say that Image is the base class and VideoFrame is the

derived class. These are also referred to as the superclass and

the subclass respectively.

But note that you can not get a timestamp from an Image class.

VideoFrame *vfp = new VideoFrame(200,200,10);

Image *ip = vfp; // safe since a VideoFrame

// can do anything that an image can do

ip->set_pixel(10,20,0); // ok

t = ip->get_timestamp(); // illegal even though ip

// really points to a VideoFrame

18 Engineering Part IIA: 3F6 - Software Engineering and Design

How Class Derivation is Implemented

pixels
timestamp

000FF000
000FF004
000FF008
000FF00C
000FF010
000FF014
000FF018

000FF000

001FF000
001FF004
001FF008
001FF00C
001FF010
001FF014
001FF018

00000280
000001E0

width = 640
height = 480

00000000
Video Frame

Image

