First Time Experiences Using SciPy for Computer Vision Research

Damian Eads and Edward Rosten ISR Division Los Alamos National Laboratory Los Alamos, New Mexico

{eads,edrosten}@lanl.gov

Research Problem

Find the cars

Algorithm Workflow

New Research Project

- New government research project in 2007
- Learn object detectors from example data
- Explore new algorithms
- Requirements: short deadlines, must work on Windows and Linux, algorithms exploration, and production system.
- Extensive knowhow with MATLAB and C++
- No experience with SciPy
- Chose Scipy: risk

Postmortem

- SciPy: a superior choice
- nice learning curve: useful in a few hours
- effective for research and production codes
- universal language (Python)
- easy to rework prototypes into deployable applications

SciPy: good for prototyping

- Easy to vectorize
- Succinct syntax (thanks to Python's extensive support for operator overloading)
- Slicing with views: avoids copying!
- Unlike MATLAB, R and Octave: Python is a universal language
 - Separation of concerns:
 - **Python group**: the language
 - SciPy group: scientific codes
 - Larger corpora of libraries, more subcommunities: GUI, database, file unpacking, etc.

What this talk is about...

Topic 1. Extensions

- Have large data sets
- Can't always vectorize
- Topic 2. C++
 - Lots of anti-C++ people
 - Static efficiency
 - How to interface?

Why we need C++?

- A lot of Computer Vision code can't be vectorized
 - Python "for" loops: cost prohibitive for very large data sets.
- **C++**:
 - "for" loops are efficient
 - lots of serial algorithms and data structures, e.g. sets, queues, heaps, multimaps, etc.
 - static efficiency
 - you can do more in-place

Computer Vision Codes

Iarge data sets and significant computation

- efficiency is important
- Avoid unnecessary duplication
 - Can slow things down,
 - Or hose you!
- used LIBCVD: a C++ library
 - Cambridge Video Dynamics Library
 - Frame-rate real time implementations of many computer vision algorithms
 - Essential for our work
 - Need to interface C++ library with Python

Basic LIBCVD Data Structures

- BasicImage<T>: an image object that does not manage its memory
- Image<T>: a new image object whose memory is allocate when created
- SubImage<T>: region of an image
- ImageRef: coordinates in an image; has two members: x and y.

What we want?

 Call LIBCVD function, pass a numpy array and get back a numpy array.
 Hide the LIBCVD infrastructure!

C++ and Python

Semantic differences can be painful

- Both want to manage their own memory
- Example: when resizing an array, there is no way to tell Python to look at a different buffer
- Fortunately, LIBCVD has numpy-like semantics
- Can't always preallocate: size of the buffer might not be known a priori
- Hard to examine C++ data structures from Python, e.g. std::vector

- Call functions by name from shared libraries
- Distutils won't compile shared libraries properly on windows and Mac OS X
- Does not understand C++ name mangling or template instantiation
 - Hard to translate C++ data structures into Python ones

ctypes

C wrapper function. Can call it like a Python function with C-types.

ctypes

Converts a C++ vector of (x,y) points to a Carray so it can be understood by c-types

Type checking cannot always be done can cause core dumps. Python wrapper may be needed three wrappers per C++ function! more wrappers to write, more bugs ctypes inappropriate for our purposes!

Appropriate for wrapping

- numerical C codes where buffer sizes are known a priori
- non-numerical C codes with simple interfaces
- Not appropriate for C++.

weave

- can write C++ and C programs in Python as multi-line strings!
- hashes C++ program strings to map to compiled code
- properly handles iteration over strided arrays
- pseudo-templated: changing types of input variables causes recompile

weave

Pros

- Great for prototyping "high risk" code
- Seems to work on both platforms
- Cons
 - Compiler errors can be somewhat cryptic.
 - Code translation: somewhat opaque
 - Released binary requires compiler

Boost::Python

- Large, powerful, and mature library for interfacing C++ code with Python.
- Steep learning curve: Large investment of time up-front
- Protection can be annoying
 - C++ objects are copied prior to being returned to Python space: avoid problems
 - Hard to avoid copying
 - Excessive copying: either quite costly or a show stopper!

Python C Extensions (PythonExt)

- Eventually settled on PythonExt
- Conversion from Numpy to CVD and vice versa is easy: helper functions
- Error handling is easy!
 - Aggressive type checking with templated helpers
 - Throw exception
- Only a single wrapper function needed.
 - Wrapper in Python space was unnecessary
- Easy to parse complicated argument tuples!
- Great framework!

PythonExt

Wrote suite of C++-templated helper functions

- Numpy to C++/CVD
 - BasicImage <T> to_cvd<T>(PyObject *np)
 - void np_to_irvec<T>(PyArrayObject *obj, vector <ImageRef> &out)
- C++/CVD to Numpy
 - PyArrayObject *from_cvd<T>(BasicImage <T> &img)
 - PyArrayObject *irvec_to_np<T>(vector <ImageRef> &points)

PythonExt: type checking

```
#define CODE(Type, PyType) \
template<> struct Code<Type>\
{\
    static const int type = PyType;\
    static string name(){ return #Type;}\
    static char code(){ return PyType##LTR;}\
}
```


PythonExt: type checking

CODE(unsigned char , NPY UBYTE); CODE(char CODE(short CODE(unsigned short, NPY USHORT); CODE(int CODE (unsigned int CODE(float CODE (double

- , NPY BYTE);
- , NPY SHORT);
- , NPY INT);
- , NPY UINT);
 - , NPY FLOAT);
 - , NPY_DOUBLE);

PythonExt: type checking

```
template<class I, class P> BasicImage<I>
pyobject_to_basic_image(P* p, const string& n="") {
  if (!PyArray_Check(p) || PyArray_NDIM(p) != 2
        !PyArray_ISCONTIGUOUS(p)
      PyArray_TYPE(p) != Code<I>::type)
   throw string(n + " must be a contiguous array of " +
  Code<I>::name() + " (type code " + Code<I>::code() +
   ")!");
  PyArrayObject* image = (PyArrayObject*)p;
  int sm = image->dimensions[1];
  int sn = image->dimensions[0];
  BasicImage <I> img((I*)image->data,
                     ImageRef(sm, sn));
  return img;
```


PythonExt: error checking

```
PyObject* wrapper(PyObject* self,
                  PyObject* args) {
  try {
    if(!PyArg_ParseTuple(...))
       return 0;
    //C++ code goes here.
  catch(string err) {
    PyErr_SetString(PyExc_RuntimeError,
                    err.c_str());
    return 0;
```


Type Generality: no if statements!

```
struct End{};
```

```
template<class C, class D> struct TypeList
{
   typedef C type;
   typedef D next;
};
```


Type Generality: no if statements!

```
template<class List> struct load image by type letter
  static PyObject* load(const string& fname, char
   type letter)
    typedef typename List::type type;
    typedef typename List::next next;
    if(type letter == Code<type>::code())
        return image_load by_type<type>(fname);
    else
       return load image by type letter<next>::load(fname,
   type letter);
```


Type Generality: no if statements!

C++ Extensions

- ctypes
 - Three wrappers needed per function
 - Bug prone
 - Conversion code messy
- Boost::Python
 - Object lifetime issues
- PythonExt
 - templated greatness: type checking, type generality, clean conversion functions
 - easy error handling: throw an exception, catch in one place
 - is around to stay!

Comparison with mex

- separate source file for each function!
- > No PyArg_ParseTuple or equivalent
- Opening mex with gdb
 - Cumbersome
 - Difficult to pin down segmentation faults
- Lacks succinctness and expressibility
 - Temptations to copy code: leads to bugs

Windows Version

Use Linux or Mac OS X whenever possible

- Windows: not the best scientific computing OS
- Memory manager is wimpy
 - Allocation of large buffers: very problematic
 - Not aggressive about cleaning up data
- Processing does not work as well
 - Memory leaks
- Hard to get optimizations right
 - Core dumps optimized code requiring aligned memory – not a problem on linux
- Nice installers with distutils

MATLAB

- object-oriented infrastructure
 - objects are immutable
 - one directory per class
 - one file per method
- Pass-by-value: global variables
- Not really good for production systems
- Richer data structures often encoded with matrix
 - graphs
 - trees

Python: Production Capable

Can code richer data structures

- Graphs, trees, lists
- Good for organizing larger code bases
 - production systems
- Universal language
 - Lots of GUI toolkits, networking libraries, database suites, etc.
- MATLAB-like: simple calling conventions

Conclusion

SciPy

- A good choice!
- Easy to implement extensions to handle large data sets
- Python provides a nice extension framework
- C++ templated helpers and exceptions do the job!
- Easy to write prototype code in Python+Weave
- Universality and Separation of Concerns
 - Lots of libraries out there when your app becomes more sophisticated!
 - Good quality code!

