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Abstract The goal of object detection is to find objects in
an image. An object detector accepts an image and produces
a list of locations as (x, y) pairs. Here we introduce a new
concept: location-based boosting. Location-based boosting
differs from previous boosting algorithms because it opti-
mizes a new spatial loss function to combine object detec-
tors, each of which may have marginal performance, into
a single, more accurate object detector. A structured rep-
resentation of object locations as a list of (x, y) pairs is a
more natural domain for object detection than the spatially
unstructured representation produced by classifiers. Further-
more, this formulation allows us to take advantage of the in-
tuition that large areas of the background are uninteresting
and it is not worth expending computational effort on them.
This results in a more scalable algorithm because it does not
need to take measures to prevent the background data from
swamping the foreground data such as subsampling or ap-
plying an ad-hoc weighting to the pixels. We first present
the theory of location-based boosting, and then motivate it
with empirical results on a challenging data set.

1 Introduction

Machine learning approaches to object detection often recast
the problem of localizing objects as a classification problem.
This is convenient because it allows standard machine learn-
ing techniques to be used, but does not exploit the full struc-
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ture of the problem. Such approaches usually learn classi-
fiers that, when applied to an image patch, predict whether
or not the patch contains an object of interest. To find the
objects in an image, one first applies the learned classifier
to all possible sub-windows and then arbitrates overlapping
detections. An especially popular approach combines weak
image classifiers of local image patches using a boosting
algorithm such as AdaBoost[19]. Although windows with
strong detections provide bounding box estimates, Blaschko
and Lampert [4] noted that the training optimizes the classi-
fier for detection rather than localization.

In contrast, we consider the problem of directly localiz-
ing the objects by finding the center coordinates of (usually
many) small objects in the image (see Figure 2). Since the
objects can be as small as a few dozen pixels, this prob-
lem has a distinctly different character than the well-studied
large object detection problem (e.g. the PASCAL dataset [9])
and requires different techniques. Sliding window/bounding
box techniques can be handicapped by the lack of surround-
ing context [6], and expanding the windows to provide this
context risks reducing the localization accuracy and collaps-
ing nearby objects into a single detection. The individual ob-
jects are already very small, so parts-based detection is un-
likely to be helpful (although a small object detector could
be useful for detecting and locating parts within a large ob-
ject detector). Pixel-based methods, which are often equiv-
alent to sliding window methods, have had some success
despite difficulties with spurious detections and arbitrating
between nearby objects. They also illustrate a shortcoming
of classification based methods. A classifier finding all of
the pixels on half of the objects will have the same score as
one finding half of the pixels on all of the objects. The latter,
however, is a much better object detector.

The main contribution of this paper is a new boosting-
based methodology for object detection that works directly
in location space rather than going through a classification
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step. In this work, a location-based object detector takes as
input an image and produces a list of (x, y) pairs where each
pair in the list is the predicted center of an object. Instead of
focusing on finding new features or new ways of casting ob-
ject detection as classification, we present Location-Based
Boosting (LB-Boost), an algorithm specifically tailored to
location-based object detectors. This algorithm treats im-
ages in their entirety rather than using windows as its basic
units. LB-Boost is different from other boosting schemes be-
cause it combines location based detectors, not binary classi-
fiers. In particular, LB-Boost learns a weighted combination
(an ensemble) of location-based object detectors and pro-
duces a list of (x, y) locations. Since both the ensemble and
its components are location-based object detectors, our ap-
proach is composable and can be viewed as a meta-object
detection methodology.

At each iteration, LB-Boost incorporates a new object
detector into its ensemble. The new object detector’s pre-
dicted locations provide evidence of object centers while an
absence of objects may be suggested in those areas away
from the predicted locations. Following the InfoBoost al-
gorithm [3], LB-Boost uses two different weights for these
different kinds of evidence; this decouples and simplifies the
weight optimization while speeding convergence. The mas-
ter detector for the ensemble uses the weighted combination
of the ensemble members’ evidence to produce a final list of
predicted locations.

LB-Boost uses a new spatially-motivated loss function
to drive the boosting process. Previous boosting-based slid-
ing window and pixel classifiers use a smooth and strictly
positive loss function (like AdaBoost’s exponential loss) summed
over both the foreground and background. In contrast, the
loss function we propose does not penalize background lo-
cations unless an object detector in the ensemble generates
a false detection at that location. Therefore LB-Boost effec-
tively ignores the large amounts of uninteresting background
and focuses directly on the object locations. This empha-
sis on the foreground makes training on entire images feasi-
ble, eliminating the need for subsampling windows from the
background. As in standard boosting methods, the loss of
the master detector is positive and decreases every iteration.

2 Background and Previous Work

In order for machine vision systems to understand an image
or a visual environment, they must be able to find objects.
Object detection is thus an important area of research but
the problem is ill-posed, making a unified and guarantee-
based approach elusive. In recent years, the community has
been headed toward formalizing different object detection
problems, which will facilitate the study of more rigorous
approaches to learning in vision systems.

Our techniques are different form the typical sliding win-
dow approach to object detection [19,11] where an image
classifier is applied to every sub-window of an image in or-
der to quantify how likely it is that there is an object within
the window. The image patch within the window, either pro-
cessed or unprocessed, is then taken as a feature vector. This
allows standard machine learning methods to be used to de-
termine the presence or absence of an object within the win-
dow. A good sliding window approach must generate con-
fidences meaningful to the vision problem domain at hand
and must carefully arbitrate between nearby detections. Re-
cently, Alexe et allet@tokeneonedot [2] identify necessary
characteristics of sliding window confidence measures, and
propose a new superpixel straddling cue, which shows strong
performance on the PASCAL dataset [9]. Expanding the win-
dow to include context from outside the object’s bounding
box can improve detection accuracy at the expense of local-
ization (see the discussion and references in [5] for some
examples). Our location-based methodology is holistic and
does not restrict the context that can be used by the ensemble
members.

There are several overlapping categories of object de-
tection methods. Parts-based models, as the name implies,
break down an object into constituent parts to make predic-
tions about the whole [10,1]. Some model the relative po-
sitions of each part of an object while others predict based
on just the presence or absence of parts [15,20]. Heisele, et
allet@tokeneonedot [15] train a two-level hierarchy of sup-
port vector machines: the first level of SVMs finds the pres-
ence of parts, and these outputs are fed into a master SVM
to determine the presence of an object. Although some en-
semble members might be similar to parts detectors, our en-
semble members are optimized for their discrimination and
localization benefits rather than being trained on particular
parts of the objects.

In this paper we do not consider segmentation which in-
volves fully separating the object(s) of interest from other
objects and background using either polygons or pixel clas-
sifiers [18]. However, we note that some object detection and
localization approaches do exploit segmentation or contour
information (for example, [11,17,14]).

A large number of object detectors use interest point de-
tectors to find salient, repeatable, and discriminative points
in the image as a first step [7,1]. Feature descriptor vectors
are often computed from these interest points. The system
described here uses a stochastic grammar to randomly gen-
erate image features for the ensemble members, although
ensemble members derived from interest points and their
feature descriptor vectors may be a fruitful direction for fu-
ture work.

Boosting is a powerful general-purpose method for cre-
ating an accurate ensemble from easily learnable weak clas-
sifiers that are only slightly better than random guessing.
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AdaBoost [12] was one of the earliest and most successful
boosting algorithms, in part due to its simplicity and good
performance. The boosted cascade of Viola and Jones [19]
was one of the first applications of boosting for object detec-
tion. Instead of using boosting to classify windows, we pro-
pose a new variant of boosting that is specially tailored to the
problem of object detection. In particular, the learned master
detector outputs a list of predicted object centers rather than
classifying windows as to whether or not they contain ob-
jects. Aslam’s InfoBoost algorithm [3] is like AdaBoost, but
uses two weights for each weak classifier in the ensemble:
one for the weak classifier’s positive predictions and one for
its negative predictions. This two-weight approach allows
the ensemble to better exploit the information provided by
marginal predictors. In our application the two-weight ap-
proach also has the benefit of decomposing (and thus sim-
plifying) the optimization of the weights.

The Beamer system of Eads et allet@tokeneonedot uses
boosting to build a pixel-level classifier for small objects
[8]. The pixel based approach requires pixel-level markup
on the training set instead of simply object centers, and we
show improved results with our object-level system on their
dataset in Section 4.1.

Blashcko and Lampert’s work [4] may be the most sim-
ilar to ours in spirit. Rather than simply classifying win-
dows, they use structural SVMs to directly output object lo-
cations. From each image their technique produces a single
best bounding box and a bit indicating if an object is be-
lieved to be present. Our methodology is based on boosting
rather than SVMs, and detects multiple object centers as op-
posed to a single object’s bounding box.

3 Learning Algorithm

Location-based boosting is a new framework for learning a
weighted ensemble of object detectors. As in the functional
gradient descent view of boosting [13,16], the learning pro-
cess iteratively attempts to minimize a loss function over the
labeled training sample. Since we are learning at the object
rather than pixel level, each training image is labeled with a
list of (x, y) pairs indicating the object centers, rather than
detailed object delineations. In each iteration a promising
weak object detector is added into the master detector. Most
boosting-based object detection systems use weak classifiers
that predict the presence or absence of an object at either
the pixel or window level. In contrast, this work uses a dif-
ferent type of weak hypotheses that predicts a set of object
centers in the image and the boosting process minimizes a
spatial loss function. Our loss function (Section 3.3) encour-
ages maximizing the predictions at the given object loca-
tions while keeping the predictions on the background areas
below zero. This allows large areas of uninteresting back-

ground to be efficiently ignored. The form of the loss func-
tion is chosen so that the optimization is tractable.

3.1 Object Detectors and ‘Objectness’

An object detector may be simple, like finding the large lo-
cal maxima of an image processing operator. It can also be
complex, such as the output of an intricate object detection
algorithm. When a (potentially expensive) object detector
attaches confidences to its predicted locations, one gets a
whole family of object detectors by considering different
confidence thresholds.

A confidence-rated object detector is given an input im-
age (or set of images) and generates a set of confidence-rated
locations h = {((x1, y1), c1),((x2, y2), c2), . . . , ((xn, yn), cn)}
where (xi, yi) is the i’th predicted location in the image and
ci is the confidence of the prediction. The confidences in this
list define an ordering over the detections, and we use h(θ)
for the list h filtered at confidence threshold θ:

h(θ) = {(x, y) : ((x, y), c) ∈ h and c ≥ θ}. (1)

Each confidence-rated object detector will be coupled with
an optimized threshold when it is added to the ensemble,
and the master detector uses the filtered list of locations to
make its predictions. Since confidence-rated object detec-
tors can have radically different confidence scales, it is dif-
ficult for the ensemble to make post-filtering use of the con-
fidence information. During the training state, this filtering
approach allows the efficient consideration of many candi-
date object detecters derived from the same (possible expen-
sive) confidence-rated predictor.

It is unlikely that the locations predicted by an object
detector will precisely align with the centers of the desired
objects, but they do provide a kind of evidence that an object
center is nearby. We use a non-negative correlation function
C(x,y) to measure the evidence that an object is at location
x given by the predicted location y (we use x and y, as
well as (x, y) to denote locations in the image). There are
several alternatives for the function C, which one is most
appropriate may depend on the particular problem at hand.
A simple alternative is to use a flat disk:

C(x,y) =

{
1 if ||x− y||2 < r

0 otherwise,

where r is the correlation radius. Other natural choices in-
cludeC(x,y) = max{0, 1−d(x,y)} orC(x,y) = max{0, 1−
d(x,y)2} (where d is a distance function). A whole fam-
ily of alternatives view the object location x and/or the pre-
dicted location y as corrupted with a little bit of noise, and
C(x,y) is the convolution of these noise processes. For ef-
ficiency reasons we require that C(x,y) is non-zero only
when x and y are close (allowing the bulk of the background
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to be ignored). Without loss of generality we assume that the
correlation is scaled so C(x,y) ≤ 1.

We use f(x;h(θ)) for the evidence1 given by object de-
tector h(θ) that an object is at an arbitrary location x. One
can think of f(x;h(θ)) as the “objectness” assigned to x

by h(θ) (unlike the generic “objectness” coined by Alexe et
allet@tokeneonedot [2], here “objectness” is a location’s
similarity to the particular object class of interest). Although
it is natural to set f(x : h(θ)) =

∑
y∈h(θ) C(x,y), It will

be convenient for the evidence to lie in [0, 1], and the sum
can be greater when h(θ) contains several nearby locations.
Therefore we define f(x;h(θ)) as as either capped:

f(x; θ) = min

1,
∑

v∈h(θ)

C(x,v)

 (2)

or uniquely assigned from the closest detection:

f(x; θ) = max
v∈h(θ)

C(x,v). (3)

Our experiments indicated little difference between these
two choices.

3.2 Hit-or-Shift filtering and the master hypothesis

If weak hypotheses could only add objectness to the mas-
ter hypothesis, then the objectness due to a false positive
location would be impossible to remove. However, a lack
of detections may be interpreted as evidence of absence of
objects. To handle this, we process the weak hypothesis to
reduce the objectness in those image locations which are
uncorrelated with the locations predicted by the hypothesis,
h(θ).

The negative influence is achieved using the HoS (Hit
or Shift) filter. The filter is designed to make optimization
tractable. A hit is a location with positive objectness which
exerts positive influence on a master hypothesis. In con-
trast, the shift is a location with no objectness which ex-
erts negative influence. Recall the definition of f(x; θ) =

maxv∈h(θ) C(x,v). Given a location x, a HoS weak hy-
pothesis predicts the positive quantityαf(x) only when f(x; θ)
is positive and otherwise predicts −s:

f ′(x) =

{
αf(x; θ) if f(x; θ) > 0,
−s if f(x; θ) = 0.

(4)

The HoS formulation is useful because it allows the opti-
mization of α and s to be performed as two independent
one dimensional searches rather than a two dimensional op-
timization.

1 We use “evidence” informally rather than in its statistical sense.

To avoid cluttering the notation, we keep the HoS hy-
pothesis parameters α, s, and θ implicit. We assume that
the detectors are positively correlated with objects, imply-
ing s ≥ 0 and α ≥ 0; this simplifies the optimization.

Together, the two parameters α and s allow us to create
a weighted sum of HoS detectors. This is analogous to Ad-
aBoost, which creates a weighted sum of weak hypotheses,
where each hypothesis has only a single weight. Using two
weights can make better use of hypotheses, for example, a
weak hypothesis that has few false positives but finds only
some of the objects can contribute a large α and a small s
even though its overall accuracy may be poor.

The master hypothesis uses an ensemble of HoS filtered
hypotheses, and we subscript h, f , and f ′ to indicate the
ensemble members. The master hypothesis from boosting
iteration t is the cumulative objectness of the t HoS weak
hypotheses in the ensemble:

Ht(x) =

t∑
i=1

f ′i(x). (5)

Ht(x) predicts objects where Ht(x) > 0, and background
otherwise. It can be turned into a confidence rated detector
producing the list {((x1, y1), c1), · · · ((xn, yn), cn)} where
(xi, yi) are positive local maxima of Ht and the confidence,
ci = Ht((xi, yi)), are the height of the maxima.

3.3 Optimizing the weight and shift parameters

Optimizing the performance ofH requires an objective func-
tion. The objective function is defined over the training set
so that the position of objects is known. To make optimiza-
tion tractable, our objective is split into two parts, the loss
on objects and the loss on background. We define the loss
on objects to be:

Lobj =
∑

x∈obj
e−Ht(x), (6)

where ‘obj’ is the set of object locations. Lobj generates a
very large loss if strong background is predicted where an
object exists, whereas the loss rapidly shrinks if an object is
predicted in the right place. We define the loss outside the
objects of interest, i.elet@tokeneonedoton all background
pixels, ‘bg’, as:

Lbg = b
∑
x∈bg

max
{
0, eHt(x) − 1

}
, (7)

where b = |obj|
|bg| is the background discount which sets the

trade-off between false positives and false negatives. This
generates a large loss if an object is predicted in the back-
ground, but generates absoloutely no loss on background
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Fig. 1 Plots of (a) two overlapping quadratic bumps with centers x and v, (b) the truncated quadratic kernel g as a function of distance d =
||x− v||2/r, and (c) the correlation C.

correctly predicted. Therefore Lbg allows vast swaths of
easily learned background to be efficiently ignored because
the loss on those regions never rises above zero. The total
loss is Lobj + Lbg. This loss function puts more emphasis
on correctly learning object concepts and less on learning
unimportant object background than the exponential loss as-
sociated with AdaBoost.

Note that the training set, obj ∪ bg is not necessarily the
entire image, as pixels near to ‘obj’ are not background pix-
els. No loss is computed on these intermediate pixels. These
intermediate “don’t care” regions may be taken to be a disc
shaped region around each object location.

At each iteration t, the new master hypothesis Ht is cre-
ated by selecting a new weak hypotheses ht and adding its
objectness function f ′t to the previous hypothesis Ht−1. To
optimize the parameters of a candidate hypothesis h it is
convenient to re-partition the loss by partitioning the train-
ing set. The partitioning allows us to separate the loss into
components which depend only on s or only on α. This al-
lows up to optimize s and α independently.

The pixels in ‘obj’ for which ft is positive are:

obj+ = {x ∈ obj : ft(x) > 0}, (8)

likewise, we define the other partitions as:

bg+ = {x ∈ bg : ft(x) > 0}, (9)

obj0 = {x ∈ obj : ft(x) = 0}, (10)

bg0 = {x ∈ bg : ft(x) = 0}. (11)

For brevity, we write H(x) ≡ Ht−1(x) and f(x) ≡
ft(x). The total loss of Ht can be written as a sum of two
loss functions, the alpha loss, which depends only on α and
the shift loss which depends only on s.

The alpha loss can be expressed as:

Lαt =
∑

x∈obj+
e−αf(x)−H(x)+

b
∑

x∈bg+

max{0, eαf(x)+H(x) − 1},
(12)

and the shift loss which depends only on s is:

Lst =
∑

x∈obj0
e−H(x)es + b

∑
x∈bg0

max
{
0, eH(x)e−s − 1

}
.

(13)

Lst is a sum of non-negative convex functions in s, and thus
is convex in s. When the set obj0 is empty (i.e. no false nega-
tives) then the shift loss Lst can be made zero by setting s to
max

x∈bg0 H(x). Otherwise, the derivative of Lst is piece-
wise continuous, with discontinuities when s = H(x) for
some x ∈ bg0.

Since the first sum in Equation 13 is independent of s,
we define V =

∑
x∈obj0 e

−H(x) for convenience. Lst can
be be rewritten as:

Lst = V es + b

n∑
i=1

mimax
{
0, ekie−s − 1

}
, (14)

where ki are distinct values such that k1 < · · · < kn, mi = |
{
x ∈ bg0, H(x) = ki

}
|

and mi ≥ 1. The index j ≤ i is the index where eki−s ≤ 1.
By sorting the background values in this manner, we can
easily split the values in to two groups: those for which the
max operator returns zero and those for which it does not.
Only the latter contribute to the sum. A locally correct equa-
tion for Lst is:

Lst (j) = V es + e−sb

n∑
i=j

mie
ki − b(n− j + 1) (15)

where Lst (j) is valid in the range kj−1 ≤ s ≤ kj . Lst can be
easily optimized in closed form, making the optimization of
s very efficient asLst (j) is naturally computed incrementally
from Lst (j +1). By setting the derivative to zero, we get the
unconstrained minimizer of the locally correct loss:

ŝ∗(j) =
1

2
ln

∑n
i=jmie

yi

V
(16)

but since s(j) is constrained, the minimizer is:

s∗(j) = max {kj−1, {min ŝ∗(j), kj}} . (17)

Efficiently optimizing α is similar, but trickier. We begin
by rewriting the alpha loss to remove the maximum,

Lαt =
∑

x∈obj+
e−H(x)e−αf(x)+

b
∑

x∈bg+
:α>

−H(x)
f(x)

(
eH(x)eαf(x) − 1

)
.

(18)
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We assume 0 ≤ f(x) ≤ 1 which can be enforced by either
capping (Equation 2) or uniqueness (Equation 3). Even with
this assumption, the exp(αf(x)) terms are problematic.

Similarly to Ls we define z1 < · · · < zn to be distinct
values such that Ai =

{
x ∈ bg+, −H(x)

f(x) = zi

}
and Ai 6=

∅. Additionally, we define z0 = 0 andA0 =
{
x ∈ bg+, H(x) > 0

}
.

Ai therefore partitions the set bg+.
We can now write a locally correct Lαt (j) = Lαt where

yj < α ≤ yj+1:

Lαt (j) =
∑

x∈obj+
e−H(x)−αf(x) +

j∑
i=0

∑
x∈Ai

[
eH(x)+αf(x) − 1

]
(19)

We overestimateLαt as L̂αt by approximating exp(±αf(x))
with 1−f(x)+f(x) exp(±α) and then minimize this over-
estimate. Like the shift loss, the overestimate is convex and
its derivative:

∂L̂αt (j)
∂α

= e−α
∑

x∈obj+
e−H(x)f(x)+eα

j∑
i=0

∑
x∈Ai

eH(x)f(x)

(20)

is piecewise continuous. The value of α that minimizes the
overestimate is either a point where the derivative is discon-
tinuous or the solution to setting the derivative in one of its
piecewise continuous regions to zero. Since Lαt equals the
overestimate when α = 0, any α > 0 minimizing the over-
estimate also reduces the alpha loss Lαt .

Note that if flat kernels are used (f(x) ∈ {0, 1}), then
an approximation is not required and the locally correct loss
is:

Lαt (j) = e−α
∑

x∈obj+
e−H(x) + b

∑
x∈bg+

;−H(x)>qj

eαeH(x) − 1 (21)

where q1 < · · · < qn are the distinct positive values of
H(x). This equation is strictly convex and can be optimized
in a manner similar to Ls.

3.4 Finding the best θ

The previous discussion assumed that the threshold θ for
filtering the locations in h had already been chosen. How-
ever, the effectiveness of a weak hypothesis often depends
on choosing an appropriate threshold, and naively search-
ing over (θ, α, s) triples is computationally expensive even
though the searches for α and s can be decoupled. Fortu-
nately, there is structure associated with θ that enables some
efficiencies.

When threshold θ is above the highest confidence, h(θ)
contains no locations. As θ drops, locations are added to

h(θ) in confidence order. As locations are added to h(θ) we
incrementally update the obj+, bg+, obj0, and bg0 sets as
well as the local approximations and related sums needed
to find the s and α parameters. This exploitation of previ-
ous computation greatly speeds the optimization of s and α
for the new threshold and allows an exhaustive search over
θ thresholds. Therefore the best parameters found provably
minimise the empirical loss estimate Ls+ L̂α within the pa-
rameterized family of weak hypotheses associated with h.

4 Practical application of location-based boosting to
detecting small objects

Location-based boosting is an abstract algorithm; it creates
an ensemble using a source of confidence-rated detectors.
One way to create detectors is to take a feature intensity im-
age and convert its local maxima into predicted locations
with the height of the local maxima used as the confidence.

In each boosting iteration we generate several (typically
100) random features and optimize their θ, α, and s param-
eters. The resulting hypothesis that results in the minimum
loss is incorporated into the master hypothesis.

The labeled data is split into three partitions. The first
partition is to train the HoS ensemble. The second partition,
known as validation, is used to train other parameters. The
third partition, known as testing, is used to evaluate the per-
formance of the algorithm.

Easy labeling One benefit of location-based boosting is that
only object centers need to be annotated. This simplifies the
labeling of training data.
“Don’t Care” regions When an HoS hypothesis predicts an
(x, y) location, the nearby pixels also accumulate object-
ness. However, locations close to an object center are likely
to be part of the object, and thus should not be treated as
background. When training, we create a disc-shaped “don’t
care” region of radius ρ around each object location, and
the background loss calculations omits the locations within
these “don’t care” regions.
Master detector To finally detect objects in an image, the
master hypothesis H(x) is evaluated at every location x in
the image. In Figure 2(a), positive master hypothesis object-
ness are shown in green, and negative objectness in red. The
intensity reflects the magnitude of the cumulative object-
ness.

There are numerous ways to extract the (x, y) detec-
tions from the master hypothesis, so it is necessary to com-
pare some of them in an experiment. Our baseline is to find
large local maxima (LLM) of H , where ‘large’ is defined
by a threshold. Pre-smoothing the master hypothesis im-
age helps reduce multiple detections, and the LLM detector
takes the pre-smoothing radius as a parameter. This parame-
ter is trained on the validation set. Each point along the ROC
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Predicted Non-object Pixel

Predicted Object Pixel

Ground Truth Object Outline

True Positive
False Positive

(a) (b) (c) (d)

Fig. 2 Plots of (a) an example master hypothesis H of an image and (b) final unfiltered detections (yellow crosses) of an HoS ensemble with
ground truth enclosed with red circles. The diagram in (c) illustrates three hypothetical pixel classifications of the same object, which highlights
some drawbacks of pixel classification loss. The upper two classifications have equal loss and a tenth of the loss of the lower classification. In (d),
the same object is detected by four different object detectors, highlighting that scoring object detectors is ill-posed.

curves in Figure 3 corresponds to a different thresholding of
the LLM.

For comparison, we also employed a Kernel Density Es-
timate (KDE) detector. It applies Kernel Density Estimation
over the locations produced by the (unsmoothed) LLM de-
tector. The parameter for the KDE is the radius of the KDE
kernel. The final detections are the large local maxima of the
KDE, shown with yellow crosshairs in Figure 2(b).

4.1 Experiments

Detecting small, convex objects in images is a natural appli-
cation for (x, y) location-based object detection. We show
that the HoS location boosting algorithm performs very well
compared to a much more elaborate algorithm with many
more parameters. We compare HoS boosting with the Beamer [8]
system on the ‘Arizona dataset’ described in that paper. Beamer
is an AdaBoost based system using Grammar-guided Fea-
ture Extraction (GGFE), which relies on elaborate post-processing
of features and the master hypothesis and an extensive, com-
putationally expensive multidimensional grid search over the
post-processing parameters to maximize the AROC (Area
under ROC) score.

To facilitate a comparison between HoS boosting and
Beamer we use GGFE [8] to generates a rich set of im-
age features. We use two grammars provided in the GGFE
package, rich and haar. The first grammar generates a
broad set of non-linear image features such as morphology,
edge detection, Gabor filters, and Haar-like [19] features.
The second grammar just generates Haar-like features.

Beamer and HoS boosting use exactly the same training,
validation, and testing partitions as well as the same GGFE
feature grammars. The parameters used during training and
validation are described in Table 1.

In addition, we investigate the utility of the max opera-
tor in the loss function by comparing the results of the HoS
detector on the much simpler smooth loss function. Recall

Parameter Value
δ 10 pixels

b
num objects

num bg pixels
Iterations 100
Features per iteration 100
ρ 7 pixels
Maximum false positive rate for AROC 2.0

Table 1 Training parameters

the non-smooth loss function:

L =
∑

x∈obj
e−Ht(x) + b

∑
x∈bg

max
{
0, eHt(x) − 1

}
.

We compare this to a smooth loss function which replaces
the max with an exponential,

L =
∑

x∈obj
e−H(x) + b

∑
x∈bg

eH(x). (22)

The smooth function is considerably easier to optimize but
is not able to ignore large parts of the background.

ROC curves and Validation To compare the detectors we
use ROC curves which are truncated along the false posi-
tive rate axis. The reason for the truncation is that detectors
achieving a false positive rate exceeding two are of limited
practical interest.

To generate a ROC curve, each prediction must be marked
a true or false positive, and the detection rate is simply the
proportion of objects found. As the three examples in Fig-
ure 2(d) show, scoring object detectors is ill-posed. A good
detector for object counting may be a poor detector for con-
tour detection, tracking, or target detection. This motivates
the need to choose a scoring metric fits the object detection
problem at hand. We chose to use the nearest neighbors met-
ric used by Beamer to evaluate car detection on the Arizona
data set. In this metric, true positives must be within δ pix-
els of a ground truth object location. Additional detections
of the same object are false positives. The parameters giving
the most favorable performance on the validation set are ap-
plied to the final test set to give the reported results. During
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validation for HoS boosting, Average Precision was used as
the validation criteria. For the competing detectors, the area
under the ROC curve was used to select the best parameters
during validation.

Results Discussion Figure 3 shows ROC curves on the test-
ing partition of the Arizona data set. HoS ensembles perform
comparably to Beamer, a competing pixel-based approach.
Beamer’s accuracy sharply increases but quickly plateaus
whereas the detection rate of the HoS ensemble continues
to rise. As shown in Figures 3(a-b), non-smooth loss (solid)
gives more favorable accuracy than smooth loss (dashed), a
rich set of features generated with a grammar outperforms
using just Haar features alone.

One interesting phenomenon worth noting is the ROC
curves on out-of-sample data sets appear to partially stabi-
lize in fewer than 100 iterations. The detection rate of points
at lower false positive rates change minimally but the detec-
tion rate continues to improve at higher false positive rates.
It is worth noting that HoS generalizes on the Arizona data
with significantly less optimization of training parameters
than Beamer.

5 Conclusion

We consider object detection in images where the desired
objects are relatively rare and the bulk of the pixels are unin-
teresting background. Pixel and widow-based methods must
explicitly sift through the mass of dull background in order
to find the desired objects. In contrast, location-based ap-
proaches have the potential to zoom directly to the objects
of interest.

We created a boosting formulation which uses weak hy-
potheses that predict a list of confidence rated locations.
These are then filtered with the Hit or Shift (HoS) filter to
make weak detectors. We used an exponential loss reminis-
cent of AdaBoost, but modified so that it ignores background
pixels unless they are near a location predicted by a weak hy-
pothesis in the ensemble. Although our modified loss func-
tion is only piecewise differentiable, we describe effective
methods for optimizing the parameters and weights of the
weak hypothesis to minimize an upper bound on the loss.

We allow our weak hypotheses to have two different
weights: one for the areas near the predicted locations and
a shift that reduces the objectness of locations not near the
predicted ones. This shift works somewhat like negative pre-
dictions and allows the master hypothesis to fix false posi-
tive predictions by its ensemble members. The structure of
HoS allows us to optimize its three parameters (the weight,
the shift and threshold on detections) efficiently. This is im-
portant because separately optimizing the shift and positive
predictions lets the master hypothesis make better use of

marginal weak hypothesis. By finding the (approximately)
optimal HoS parameters we can search through a large num-
ber of features in each iteration of boosting.

Experimental results on a difficult data set show that
our implementation gives state-of-the-art performance, de-
spite being considerably simpler and having considerably
fewer parameters than competing systems. Since the method
proposed provides a framework for incorporating arbitrary
weak object detectors, we are confident that the technique
has wide applicability.

Finally, with the permission of the original authors [8],
we will be making the small object data set available to oth-
ers wishing to test their algorithms.
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Fig. 3 Plot (a) shows the results with quadratic overlap correlation kernels and plot (b) shows results with cylindrical correlation kernels. ROC
curves are presented for each competing detector applied to the test partition of the Arizona data set. These detectors include (a) location-boosted
HoS ensembles, (b) Beamer, and (c) a variant of the Viola and Jones object detector.
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