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ABSTRACT

Rapid 3D reconstruction of environments has become an active re-
search topic due to the importance of 3D models in a huge number
of applications, be it in Augmented Reality (AR), architecture or
other commercial areas. In this paper we present a novel system
that allows for the generation of a coarse 3D model of the environ-
ment within several seconds on mobile smartphones. By using a
very fast and flexible algorithm a set of panoramic images is cap-
tured to form the basis of wide field-of-view images required for
reliable and robust reconstruction. A cheap on-line space carving
approach based on Delaunay triangulation is employed to obtain
dense, polygonal, textured representations. The use of an intuitive
method to capture these images, as well as the efficiency of the re-
construction approach allows for an application on recent mobile
phone hardware, giving visually pleasing results almost instantly.

Index Terms: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis I.4.8 [Image Processing
And Computer Vision]: Scene Analysis—Tracking; I.5.4 [Pattern
Recognition]: Applications—Computer Vision C.5.3 [Computer
System Implementation]: Microcomputers—Portable devices (e.g.,
laptops, personal digital assistants)

1 INTRODUCTION

The generation of 3D models of scenes and environments has at-
tracted a lot of attention in recent years. The tremendous impor-
tance of such models for all sorts of applications is extremely evi-
dent. These models can be used to illustrate architectural changes
in urban environments. New business paths for commerce, adver-
tising and social media can be introduced, needless to consider the
value of these models for navigation tasks and AR.

In the Computer Vision (CV) community, numerous approaches
have recently been presented concerning computational demands
and the scale at which the reconstruction problem is solved. Com-
mon to all approaches is the aim of shifting the principle generation
method from manual modelling using, for example, CAD software,
to a fully automated approach for reconstruction. Many methods
use a very large volume of images whilst exploiting the power of
cloud computing. Some methods use, in addition to images, in-
formation from non-visual sensors like laser-range finders, GPS re-
ceivers and compasses to solve the task. Only a very small group of
approaches allows for reconstruction in an on-line and instant man-
ner, mostly using very powerful and costly hardware. However,
despite the total number of all these approaches, methods of recon-
struction working on current mobile hardware, especially mobile
phones, have been little explored.

In traditional usage scenarios, the focus lies on the accuracy of
the model, not on the time taken to reconstruct it. Improvements in
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Figure 1: 3D model of a building reconstructed from a set of
panoramic images on a mobile phone.

mobile phone technology have allowed a device capable of deliv-
ering AR to be available in the pocket of the average consumer. In
turn, to be able to deliver AR on this ubiquitous platform, requires
3D models of the augmented scenes. As detailed 3D models for the
whole world do not exist (and probably cannot exist due to environ-
ments and lighting conditions changing), the need to rapidly create
coarse models of scenes in-situ, to track from and to annotate, is
apparent. In this respect, we consider the possibility of solving this
problem as a fundamental foundation for future AR applications
on mobile phones. This group of target platforms enforces the de-
velopment of a solution working under the conditions of reduced
computational and memory resources. Furthermore, the applicabil-
ity of such an approach is strongly dependent on the possibility of
delivering reasonable results in a shortened time frame. To a great
extent, these restrictions render currently known approaches inap-
plicable on these devices, giving room for research in the direction
of specially designed, efficient on-line algorithms to tackle all the
well-known limitations of embedded hardware.

The contribution of this work is the presentation of a novel ap-
proach to generate visually appealing, textured 3D models from a
set of at least 3 panoramic images on mobile phones without the
need for remote processing. Building upon previous work from
Pan et al. [21], the approach is capable of performing on current
smartphone hardware within a time span of several seconds. An
intuitive method is used for capturing panoramic images with com-
monly available small field of view (FOV) cameras which are now
present in almost all smartphones. Considering geometrical rela-
tionships between individual views, feature correspondences are es-
tablished robustly and efficiently. These correspondences form the
basis for the reconstruction of a scene using a modified space carv-
ing approach. The approach is unique in terms of efficiency and,
thus, is applied on modern smartphones to demonstrate its suitabil-
ity for use in an AR scenario. The resulting 3D models are fully
textured polygonal models that can be further used for annotation
and tracking.

In Section 2 we review related work in the area of reconstruc-
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tion and modelling. In Section 3 an overview about the entire ap-
proach is given, discussing the entire workflow in detail and pro-
viding notes on design decisions. Section 4 covers the main part
of this work, describing the algorithms used to create 3D models
from image sets exhaustively. The results of experimental tests us-
ing mobile hardware are given in Section 5. The paper concludes
with a summary of the presented work and an outlook on future
improvements in Section 6.

2 RELATED WORK

Many different approaches to automatic 3D model reconstruction
have been proposed in the last decade, mainly coming from the CV
community. The majority of these techniques perform the task in
an off-line manner. Solving the task on-line using live video feeds
has become possible only recently, mainly due to the use of very
powerful hardware. Approaches that can realistically be used on
mobile phones have been proposed in the past, but they are only
very few in number and limited in scope. Our review of related
work is organized accordingly.

2.1 Offline Reconstruction
Snavely et al. proposed a system to reconstruct buildings from large
collections of images from online community photo collections
[26]. Later, Agarwal et al. presented an improved version of this
system to perform large-scale reconstruction of urban areas using
clusters of computers and huge amounts of images [2]. As a result
both systems give point cloud reconstructions of the environment.
Klopschitz et al. presented an approach to robustly reconstruct ur-
ban areas from large sets of unordered images [15]. A system
fusing orientation and location priors to speed up reconstruction
was presented recently by Irschara et al. [12]. Other approaches to
modelling and reconstruction include for example [8, 23] or [25],
amongst others. These approaches are considered to solve the task
of modelling as an offline process, regardless of computational and
memory demands in most cases.

2.2 Online Reconstruction
An example of a point cloud reconstruction generated online from
a live video feed is the work of Klein and Murray [13]. The so-
called PTAM system allows for concurrent mapping and tracking
with a single camera in small workspaces, triangulating 3D feature
points and using a set of keyframes for self-localization and track-
ing. Several extensions to PTAM have been proposed thereupon.
Ventura and Höllerer worked on extracting planes from the sparse
point cloud and determining the extents of the planes through dense
image matching [32]. Van den Hengel et al. proposed a video-
based in-situ reconstruction system with little manual interaction,
allowing the user to accurately model objects in a short amount
of time [29, 30]. Building upon previous work, PTAM is used to
provide camera tracks plus a point cloud map and then the sys-
tem switches into an interactive modelling mode to create mean-
ingful 3D models of the environment. Newcombe and Davison re-
cently demonstrated the dense reconstruction of workspaces from
live video based on implicit surface calculations and dense optical
flow [19]. The approach gives impressive results, whilst requiring
a considerable amount of computational power, however.

Independent from PTAM-based methods, Pollefeys et al. de-
scribed a system performing real-time reconstruction of urban areas
using video feeds [22]. Their approach makes use of a multi-camera
array and uses large amounts of processing power available from
both the CPU and GPU of desktop systems. Bunnun and Mayol-
Cuevas proposed a system to interactively build 3D wireframe mod-
els of objects [6]. The system uses a combination of a camera and
computer mouse as a device for tracking and editing. Pan et al.
presented the ProFORMA system which automatically and inter-
actively generates 3D models of objects [21]. A 3D point cloud

is reconstructed from a live video through on-line reconstruction.
From the point cloud, a 3D Delaunay tetrahedralization is com-
puted and used as the underlying structure in a probabilistic space
carving approach. The most important aspect of the aforementioned
approaches is their real-time or near real-time performance and the
suitability to be applied in the context of AR scenarios.

2.3 Mobile Approaches
The most prominent approach to model generation on mobile
phones is an improved PTAM version proposed by Klein and Mur-
ray [14]. The original PTAM was modified to run on an Apple
iPhone 3G, and was demonstrated to allow mapping and tracking of
workspace-sized areas using solely the computational and memory
resources of the mobile phone. Lee et al. presented a mobile phone-
based 3D modelling framework in which images were captured on
the device whilst the 3D model reconstruction was performed on
a remote server [16]. The mobile phone can only be considered
as a thin client in this respect. Hartl et al. described a system to
model small objects using a marker target [11]. The approach is
based on space carving and the marker target is used to solve the
foreground-background segmentation task. The approach works in
real-time on a mobile phone and gives reasonable results on, for ex-
ample, tokens in a board game. Apart from these examples, using
mobile phones in any kind of reconstruction task has not yet been
investigated widely.

2.4 Discussion and Considerations
The comparably small amount of computational and memory re-
sources makes the use of currently known off-line or on-line ap-
proaches unreasonable on mobile phones and tablets. Even if, for
some reason, these devices were able to run at a performance com-
parable to desktop computers for short periods of time, limited bat-
tery capacity would remain the main opposing factor.

Although this already describes a severe problem with traditional
approaches, there are less obvious difficulties. Concerning video-
based approaches, the need for constant tracks of natural features
places an almost insuperable challenge using a mobile phone cam-
era. Camera blur and jerky camera motion due to taking steps in
the environment causes feature tracking to fail regularly, such that
many of the required image correspondences can not be correctly
established. Moreover the user is forced to constantly point the mo-
bile phone camera up and towards the object to be reconstructed, at
the same time moving around as smoothly as possible and trying
to keep the camera as steady as possible. This unfortunately places
unrealistic requirements in terms of user-friendliness. In this re-
spect, video-based on-line reconstruction techniques might not be
ideally suited for use on mobile phones.

As an alternative, many individual images could be captured us-
ing the mobile phone to perform an off-line reconstruction step af-
terwards. However, this approach also faces several difficulties.
The narrow field of view on the mobile phone means that a large
number of overlapping images are required to be taken in order to
cover a building or scene completely (c.f . Figure 2). The com-
plexity of a necessary bundle adjustment step grows very rapidly -
O
(
n3) - with the number of cameras to be estimated, thus increas-

ing the overall computational load considerably. Furthermore, the
user has to ensure that there are no gaps in the image set. From
a set of images captured it is difficult to predict with certainty if a
fully connected reconstruction is possible or not. This is usually cir-
cumvented through the use of Internet image databases, e.g. Flickr,
which hold collections of images of the same place taken by many
people. Needless to say that this is not a reasonable option in our
scenario.

Many applications on mobile phones that leverage CV methods
rely on a powerful remote server for solving the respective process-
ing task. This leaves the mobile phone client as a device for data ac-
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Figure 2: Left: Three wide field-of-view images capture almost the
whole environment. Right: More narrow field-of-view images are re-
quired to capture the same scope. The dense point-cloud recon-
struction was created using the approaches of Klopschitz et al . [15]
and Furukawa et al . [10].

quisition and information visualization as described in the example
before. In the context of 3D reconstruction, the amount of image
data is substantial. Since data of high quality is needed, transfer-
ring large numbers of high-quality images or videos becomes quite
costly in terms of data transmission. Moreover in certain areas,
transferring large amounts of data from mobile devices may not be
possible due to lack of network infrastructure.

Taking all these considerations into account we conclude that a
novel and specifically designed approach is necessary to solve the
task of 3D modelling and reconstruction on the targeted class of de-
vices. The aim is to develop an approach that is at least one order of
magnitude more efficient in terms of computational requirements,
compared to desktop reconstruction approaches. Even more im-
portantly, however, is the aspect of user-friendliness concerning the
data acquisition conditions. The goal is to allow for a convenient
way to capture the required images, at the same time minimizing
their number and the required manual user interaction. A final re-
quirement is to provide the user with a reasonable reconstruction
result as quickly as possible, i.e. within the time frame of several
seconds.

3 APPROACH DESCRIPTION

Since our approach consists of multiple complex components, a
short overview is given about the design of our approach and to de-
scribe how these parts are interconnected. As the image acquisition
algorithm is a module separate from the rest of our reconstruction
pipeline, the acquisition procedure is also described.

3.1 Overview
In Figure 3 a flowchart of our approach is depicted. The image
acquisition component is used to capture panoramic images. As
soon as panoramic image capture begins, feature extraction starts
in the background. Once the panoramic image acquisition is com-
plete, image alignment and feature matching occur if more than one
image is available. From the matches, epipolar constraints can be
calculated using the 5-point pose or the 3-point pose algorithm, de-
pending on the number of currently captured panoramas. From the
camera pose estimates and established feature correspondences, 3D
points are triangulated. The bundle adjustment step is run after each
new image is finished, improving the accuracy of the camera pose
estimates and the triangulated 3D points respectively with each ad-
ditional image. From the camera geometry estimates, additional
matches can be established, which in turn increases the number of
reconstructed 3D points.

All these steps can be run in parallel to the actual image acquisi-
tion algorithm. After all images have been captured, surface recon-
struction is performed using space carving, followed by generating
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Figure 3: Workflow of our approach running entirely on mobile phone
hardware. Most parts of the algorithm can run simultaneously with
the panorama capturing application. Solely the surface reconstruc-
tion and texturing stage are run serially.

a representation for texturing the models. Finally, the reconstructed
model can be visualized on the device itself.

3.2 Parallel Processing Pipeline
Almost all components of our algorithm can perform au-
tonomously, while the image acquisition process is the only part
that requires user interaction. Therefore most tasks in the pipeline
can be performed in the background without any intervention nec-
essary. This mainly includes the costly feature extraction and
matching steps and bundle adjustment. Since mobile phones with
multi-core CPUs are becoming available now, our approach can
take advantage of this feature immediately. However, more intu-
itive possibilities exist to cut down the time needed for modelling.
For the task of capturing multiple images the user has to change
position. While this is done the device’s computational resources
are usually idle. In our approach these time slots are spent on the
aforementioned processing steps. This leads to a very rapid final
reconstruction time, as will be shown later.

3.3 Panoramic Image Creation
Panoramic images are created online in real-time whilst panning the
camera around the user’s location. We use a version of the PanoMT
system described by Wagner et al. [33]. The mobile device is used
to collect wide field-of-view images of the same building/outdoor
scene from different locations. For each panoramic image, the pro-
gram maps frames from the live video onto a cylindrical map whilst
tracking the rotation of the device with respect to the map. Track-
ing and map building work at frame-rate (30Hz), even when using
computational resources for other processing tasks. Two panoramic
images captured using the system are depicted in Figure 4. Con-
trary to normal panorama stitching programs, the panorama is built
interactively as the user sweeps the device over the view of the en-
vironment. Capturing a panorama takes only a few tens of seconds
of interaction, as there is no need to carefully align a sequence of
overlapping images. The algorithm makes the assumption that the
camera is rotated around its optical center during panorama acqui-
sition, which is often violated since the user is usually unable to
perform a pure rotation around the device’s optical center. Since
the scene captured is usually far away compared to the distance the
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Figure 4: Two sample panoramic images from Cambridge, UK cap-
tured with the online panorama mapping algorithm.

optical center moves, however, panoramic images can still be suc-
cessfully captured.

3.4 Cylindrical Camera Model
The cylindrical camera model used with panoramic images in our
approach is formulated as follows. Let x̃w = (xw,yw,zw,1)T be the
(homogeneous) 3D coordinate of a point in the world frame and Ec
an element of SE(3) [31] representing the pose of camera c. The
3D coordinate of the point in the coordinate frame of camera c,
xc = (xc,yc,zc,1)T is expressed as:

xc = Ecx̃w (1)

The point of intersection, xi, of the ray cast by xc and a cylinder of
radius 1 with its axis aligned with the y-axis of camera c is given
by:

xi =

 xi
yi
zi

=
1√

x2
c + z2

c

 xc
yc
zc

 (2)

If the centre of the cylindrical image of size Sx × Sy is taken to
be where the positive z-axis intersects the cylinder, and V is and
vertical field of view (in radians), the function taking a point on
the cylinder in 3D to cylindrical image pixel coordinates (X ,Y )T

(origin in top left) is:

θ = (atan2(xi,zi)) (mod 2π) (3)(
X
Y

)
=

 Sx

(
0.5+ θ

2π

)
(mod Sx)

Sy

(
0.5− yi

2tan V
2

)  (4)

Also, note that a correct rectification of the panoramas to obtain
a level horizon is not necessary for reconstruction purposes. The
cylindrical camera model maps the image pixels to rays in space
and any subsequent computation of epipolar geometry and 3D cam-
era pose is formulated in terms of rays emanating from the camera
centers.

4 RAPID RECONSTRUCTION FROM PANORAMIC IMAGES

The user records several wide FOV images using the panorama
mapping algorithm. These images taken at different positions serve
as the basis for our reconstruction pipeline. The reconstruction
pipeline consists of several stages as described in this section.

4.1 Generating Correspondences
Robust and error-free feature correspondences between the individ-
ual panoramic images are required for the subsequent triangulation
and reconstruction. We employ a multi-stage procedure to provide
robustness against the distortions occurring in the cylindrical pro-
jections that lead to many wrong matches in scenes with repeated
structure.

4.1.1 Feature Extraction

A large number of different natural feature types have been pro-
posed in the context of reconstruction. Although any feature could
theoretically be used in our approach, we experiment with two dif-
ferent feature types, a SURF-like descriptor originally proposed by
Bay et al. [5], and a custom combination of FAST corners [24] and
an 8× 8 pixel image patch. This latter feature shall be referred
to as a FAST patch for the remainder of this paper. SURF Fea-
tures, like SIFT features [17], provide a degree of robustness to
scale and affine transformation, but are faster to compute. Feature
extraction speed is critical for rapid reconstruction and thus we use
an efficient modified implementation of SURF [3]. Image features
can be extracted in the background whilst the panoramic image is
captured, without affecting the frame rate of the panoramic image
capture. Features are extracted from “cells” (small rectangular re-
gions) in the panorama as each cell is completed. Since cells of the
panoramic image that have already been mapped remain unmodi-
fied later on, these areas are already processed for feature extrac-
tion.

4.1.2 Image Alignment

The panoramic images are centered around the first keyframe used
to initialize the capture and thus, the cylindrical images may not
be aligned to each other. To make subsequent feature matching
more robust and efficient, we calculate a coarse alignment between
multiple cylindrical images. Alignment is described only as a rota-
tion around the cylinder axis, assuming a level horizon and similar
standing height. We subsample the entire panoramic images to ver-
sions with a resolution of 36x4 pixels. This subsampling is created
by averaging rectangular regions in the cylindrical images. The
sum of squared differences (SSD) of the intensity values over 36
horizontal 1-pixel shifts is then calculated. The alignment rotation
is chosen as the shift which generates the lowest SSD. This proce-
dure is used to align all images to the first image through iteratively
aligning each new image to the previous one. Using subsampled
images of resolution 36x4 allows the images to be aligned within
an accuracy of approximately 10◦. In devices with digital com-
passes, the alignment procedure can be replaced by aligning each
panorama based on the North direction.

4.1.3 Feature Matching

Exploiting the fact that we are using panoramic images which are
roughly aligned, we can greatly constrain the search regions within
which matching occurs for efficiency. Matching across aligned im-
ages is restricted to 10% of the image width (corresponding to 36◦
of the 360◦ panoramic image). Multiple match candidates for each
feature are obtained in order to cope with the repetitive features
found in many urban environments.

A different method of performing this matching, and which
yields a faster matching time, is to store the feature descriptors in a
tree. A k-means tree enables very rapid matching, but unfortunately
at the expense of being too expensive to build at run-time. A k-d
tree is an alternative, but search performance suffers for large di-
mensions. Thus the cost of building trees for faster searching often
exceeds the computational requirements of matching exhaustively
in strips in the panorama.

Using a constrained search region when matching between
aligned panoramas increases search efficiency, but in certain scenar-
ios limits the minimum depth a point can be successfully matched.
In the direction of the baseline between two panoramas, no depth
constraints exist, as distance only affects the point’s imaged posi-
tion in the vertical direction, but in the direction perpendicular to
the baseline, a change in depth causes a point’s projected position
to also change in a sideways direction. Therefore, using a search
width sets a closest distance in the direction perpendicular to the
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Figure 5: This diagram shows the configuration which generates the
worst case minimum depth of a reconstructible point given a search
region of 0.1 × image width, which corresponds to a 36 ◦ search an-
gle. The 3D point is equidistant from both cameras and lies on a line
which is perpendicular to the baseline (of length b). The minimum
distance to the camera in this configuration for a point to be success-
fully matched is denoted d. Conversely, a point in the image near
the extended baseline can be modelled regardless of depth, as its
sideways disparity will always lie in the search region.

baseline at which a point can be successfully matched, which is a
function of the baseline distance, as shown in Figure 5 .

The worst case point is equidistant from both cameras, and lies
on a line perpendicular to the baseline. Using the right angle def-
inition of Sine, the ratio between the length of the baseline, b, and
the minimum distance of the point, d, can be calculated.

sin9◦ =
b/2
d

(5)

d =
b/2

sin9◦
(6)

d = 3.20b (7)

This shows that the minimum distance for matchable points in
this configuration is 3.20×baseline, so for a typical 1 meter base-
line, points perpendicular to the baseline should be at a distance of
at least 3.20 meters away. This limit only applies to points perpen-
dicular to the baseline - points in line with the direction of the base-
line can be modelled regardless of depth, as point depth only affects
vertical position in this case. For points between these two extreme
cases, the minimum reconstructible distance varies between 0 and
3.2× baseline.

Multiple hypothesis matches are generated, whereby all matches
within a certain distance in feature space are recorded. Feature dis-
tances are computed using sum of squared differences (SSD). Mul-
tiple hypotheses matching is very important for many urban envi-
ronments where there is repetitive texture in the scene. Multiple
hypothesis matches are limited to a maximum of 8 hypotheses. The
hypotheses are stored in a heap data structure, enabling the 8 lowest
scoring hypotheses to be retained efficiently without having to keep
track of a fully sorted list of match scores.

After the multiple hypotheses matches are found, we use a sub-
set of these matches from which to draw hypotheses for robust es-
timation. This is due to the low inlier rate when drawing from all
multiple hypotheses requiring too many iterations. The subset from
which we wish to draw hypotheses from contains match hypothe-
ses which are deemed “unique.” Unique match hypotheses are de-
fined as multiple hypotheses matches which either have only one
hypothesis, or have multiple hypotheses where the lowest scored

a

b

c

d

Figure 6: The matching process. (a). A panorama generated using
PanoMT. (b). FAST features detected on the panorama. (c). unique
matches found between two panoramas. (d). Epipolar inliers gener-
ated from all multimatches using unique matches as hypotheses for
5-point pose with PROSAC.

hypothesis is less than 50% the score of the next lowest.

4.2 Epipolar Geometry Recovery
When the first two images are collected, no information is known
about the 3D locations of features identified in the images. We at-
tempt to recover the epipolar geometry of the cameras by using 2D
feature correspondences and the five-point pose algorithm[20] in
conjunction with PROSAC[7] (features are sorted by match SSD).
Hypotheses for PROSAC are generated using the unique matches
set which was described in the previous section. Once an essential
matrix with a high number of inliers is obtained from PROSAC,
the matrix is decomposed into 4 possible solutions for the rotation
and translation of the cameras (translation up to scale). The correct
solution is chosen by taking a small set of inlier correspondences
and triangulating their 3D position using each of the 4 poses, then
choosing the solution which corresponds to the most points being
in the positive direction of the ray for both cameras. Results from
feature matching and epipolar geometry estimation can be seen in
Fig. 6.

4.3 Bundle Adjustment
Having obtained the camera pose and a set of 2D feature correspon-
dences for two frames, it would now be possible to simply find the
closest point of approach of rays cast by the 2D observations to con-
vert the 2D features to 3D landmarks (a 3D point with information
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about where and in which images it was observed). This approach
is, however, limited to two images, and does not provide a way of
reducing the re-projection error.

Thus instead, we formulated a triangulation scheme which ex-
presses the probability distribution of the 3D position of a landmark
in terms of camera pose and 2D observations only, and in a manner
which works for more than 2 frames. A single 2D measurement
of a 3D point corrupted by Gaussian noise on the image plane im-
plies that the 3D point lies within a conical probability distribution.
We approximate this distribution with a Gaussian. Multiplying the
distributions from all 2D measurements together gives a Gaussian
probability distribution, the mean of which is the triangulated 3D
point position. We take the width of the Gaussian to be the width of
the cone at the estimated position of the point, so this scheme must
be iterated a few times to get an accurate estimate of the 3D point
position and its uncertainty. This concept shown in Fig. 7, and is a
form of implicit bundle adjustment [18].

This formulation analytically expresses the position of land-
marks as a function of camera positions and observed pixel co-
ordinates, and thus enables us to directly calculate the derivatives
of how the reprojection error of landmarks changes with respect to
camera pose. This allows us to perform bundle adjustment, the min-
imisation of re-projection error of landmarks with respect to both
camera poses and landmark positions, using Levenberg-Marquadt.
An M-estimator [28] is used in the least squares optimisation to
make the bundle adjustment robust to outliers. Using this formula-
tion of triangulation means that landmarks are not explicitly repre-
sented but are purely functions of camera pose (and fixed 2D ob-
servations), so 3D landmark positions never appear in the bundle
adjustment, greatly reducing the computational complexity. This
directly exploits the primary sparseness inherent in the structure
from motion problem, instead of applying the Schur complement
to achieve similar results. Classical bundle adjustment methods
[27] can also be used to similar effect if using cylindrical camera
Jacobians and ported to the mobile platform.

w 

Infinite cone 

Estimated point 
position 

 

 Cylindrical 
image 

w 

Infinite Gaussian 

Estimated point 
position 

 

 Cylindrical 
image 

Uncertainty 
Gaussian 

Cylindrical 
images 

Resulting 3D 
point covariance 

Figure 7: Diagram showing a form of implicit bundle adjustment
where points are parameterised purely as a function of camera pose
and fixed 2D observations. Top left: Conical uncertainty distribution
of a single observation of a point in one cylindrical camera. Top right:
Gaussian approximation of the conical distribution of same width as
conical distribution at the predicted point depth. Bottom: Top view
of multiple Gaussian distributions representing observations of the
same point in different cameras, multiplied together to obtain covari-
ance of 3D point.

4.4 Subsequent Pose Estimation and Feature Matching

Pose estimation between the first two images is conducted using the
5-point pose algorithm. After the initial pair, points are triangulated
to obtain 3D landmark positions. This allows subsequent images to

use 2D-3D correspondences and the 3-point pose algorithm [9] in
conjunction with PROSAC to estimate camera pose. All the infor-
mation available is then bundle adjusted to obtain accurate point
locations and camera poses. Using the bundle adjusted pose, epipo-
lar inliers are found for multiple hypothesis matches not associated
to a landmark, allowing new landmarks to be created. In the final
stage of feature matching, landmarks without a correspondence in
the current frame are reprojected into the image and searched for
within a 3 pixel radius.

4.5 Surface Recovery
The model output from bundle adjustment is a 3D point cloud,
which whilst capturing the geometry of the observed features, is
only a sparse representation of the scene. For many augmented re-
ality applications, and indeed a useful visual representation of the
scene for the user, a dense 3D model is required. A modified ver-
sion of the probabilistic space carving algorithm described by Pan
et al. [21] is used to obtain the surface model, with changes imple-
mented to allow the system to perform inside-out space carving.

The convex hull of the point model is partitioned into tetrahedral
voxels via a Delaunay tetrahedralisation using QHull [4]. A Delau-
nay tetrahedralisation is the extension of a 2D Delaunay triangula-
tion to 3D. The convex hull of the point cloud is partitioned into
tetrahedra with the condition that the circumsphere of each tetra-
hedron contains no vertices of any other tetrahedra. This process
merely partitions the convex hull and thus places tetrahedra over
concavities in the scene, and so further processing is required to re-
move these extra tetrahedra. Tetrahedra are carved away based on
landmark visibility, with the probability of a tetrahedron existing
being reduced if it occludes a landmark.

Let Ti represent a triangular face of a tetrahedral voxel, c the
camera number, k the landmark number and Rc,k the ray from the
optical centre of camera c to landmark k. Let υ represent the set
of all rays with indice pairs (c,k) for which landmark k is visible
in camera c. Landmarks are taken as observations of a surface tri-
angle corrupted by Gaussian noise along the ray Rc,k, centered at
the surface of triangle Ti with variance σ2. Let x = 0 be defined
at the intersection of Rc,k and Ti, and let x be the signed distance
along Rc,k, positive towards the camera. Let lk be the signed dis-
tance from x = 0 to landmark Lk. The null hypothesis is that Ti is
a real surface in the model and thus observations exhibit Gaussian
noise around this surface. The hypothesis is tested by considering
the probability of generating an observation at least as extreme as
lk:

P(Lk|Rc,k,Ti) =
∫ lk

−∞

1
σ
√

2π
exp
(
−x2

2σ2

)
dx (8)

This leads to a probabilistic formulation of tetrahedron carving:

Pexist(Ti|υ) = ∏
υ

Pexist(Ti|Rc,k) (9)

Pexist(Ti|Rc,k) =

{
P(Lk|Rc,k,Ti) if Rc,k intersects Ti

1 otherwise (10)

If Pexist(Ti|υ) > 0.1, the null hypothesis that Ti exists is accepted,
otherwise it is rejected and the tetrahedron containing Ti is marked
for removal.

It is not necessary to test all tetrahedra, as surface tetrahedra act
as a barrier, shielding tetrahedra below from influencing the sur-
face mesh. In [21] tetrahedra are carved in a recursive manner,
starting from those tetrahedra on the convex hull. If a tetrahedron
is carved away, then its neighbours are tested for removal. This
method works for the outside-in case, where the camera is moved
around the outside of an object. When modelling scenes, however,
it is often the case that the camera is within the convex hull of the
points in the environment, in which case starting the carving pro-
cess with convex hull tetrahedra may not carve away any tetrahedra
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at all (as occluding tetrahedra actually only exist within the con-
vex hull). Therefore we generalise the carving process such that it
works for both outside-in and inside-out cases.

The first step of the algorithm is to determine which tetrahedra
contain camera points. This can be simply done by forming plane
equations for each face of each tetrahedron. If the a point corre-
sponding to the camera position lies on the ”internal” side of the
planes formed from each face of a tetrahedron, then the point is con-
tained inside the volume of the tetrahedron. Tetrahedra which con-
tain a camera point should be removed, and the recursive carving
algorithm started at tetrahedra which neighbour the removed tetra-
hedron. If any cameras are outside the convex hull of the object,
then the point lies within the infinite tetrahedron, and thus carving
should be performed on its neighbours, which correspond to tetra-
hedra on the convex hull.

Once recursive carving is complete, the surface mesh can be ex-
tracted by marking all triangular faces of tetrahedra with no neigh-
bours. The cylindrical image is mapped onto a cube in order to
allow efficient and perspective correct texture mapping of the sur-
face mesh.

5 EXPERIMENTS

For our experiments we recorded several sets of panoramic im-
ages from buildings in Cambridge, UK, Graz, AT and Vienna, AT.
As a mobile platform we used a Nokia N900 smartphone with a
600MHz ARM Cortex A8 CPU and 256MB of RAM. The device
runs Maemo OS and FCam camera drivers from Adams et al. [1]
were installed to enable greater control of camera parameters. The
entire reconstruction runs on the mobile phone platform, produc-
ing textured mesh models. For visualization purposes, the textured
models were loaded and rendered on a desktop computer using Ge-
omview1.

5.1 Reconstruction Results

Figure 9 shows results from preliminary experiments to study the
feasibility of the proposed reconstruction pipeline. The images
of the church were captured using a PC-based panoramic im-
age mapper, generating high resolution panoramic images of size
4000x1600 from a 640x480 video stream. The images were col-
lected using a camera attached to a tripod which allowed the cam-
era to rotate roughly around its optical center. These results demon-
strated the proposed approach would work with idealised data (high
resolution and fixed optical centre).

Figure 10 shows reconstruction results for an image sequence
captured on a Nokia N900 smartphone and processed on the de-
vice itself. No tripod was used and the panoramas were captured
freehand. Panoramic images were captured from a 320x240 video
stream, with the final panoramas being of size 2048x512. The first
reconstruction set (Figure 10 left middle), uses only 3 panoramas,
and recreates the overall shape of the courtyard, closely resembling
the ground truth shape as shown in the aerial image from Google
Maps. For the second reconstruction set (Figure 10 left center),
using 7 images, the reconstructed point cloud is more rectangular
and complete due to the increased number of observations for bun-
dle adjustment. The rendered mesh models show that views ren-
dered from novel viewpoints resemble the real scene, as seen from
the panoramic image. The generated mesh models are around 500-
700KB in size excluding cube map textures for this dataset.

The effect of increasing the number of cameras can be seen in
the bottom row of Figure 10. As expected, increasing the number
of cameras increases the accuracy and completeness of the model as
the additional observations result in lower uncertainties after bundle
adjustment.

1www.geomview.org

Number of Images 3 4 5
Landmark inliers 499 511 539
Number of Triangles 1013 1120 1249
Save image&features 1.3s 1.3s 1.4s
Read image&features 0.9s 1.0s 1.0s
Align last image 0.5s 0.5s 0.5s
Multimatch last image 2.5s 2.4s 2.6s
3-point pose 2.1s 2.3s 2.6s
Match Densification 0.3s 0.4s 0.4s
Bundle Adjustment 2.1s 3.0s 4.6s
3D Delaunay Triangulation 0.5s 0.6s 0.7s
Space Carving 4.1s 5.2s 6.7s
Render most recent cube map 1.5s 1.5s 1.5s
Total Reconstruction Time: 14.5s 16.9s 20.6s

Table 1: Reconstruction times for increasing input image numbers
on the Nokia N900 smartphone, using the FAST patch descriptor (for
the same sequence as Fig. 10). Timings are from when the final
panoramic image is complete.

5.2 Timing Results

Table 1 shows timing results for different numbers of input images.
In this case, FAST patch features were used, although timings are
similar for SURF descriptors as descriptor extraction itself, which
would cause the performance difference, is performed in the back-
ground during panoramic image collection and thus not included in
this table. As can be seen, elements contributing to the processing
required between collecting panoramic images total around 8-12
seconds for 3-5 images, with the final textured reconstruction taking
between 14-21 seconds after the final panoramic image is collected.
A split bar chart of the timing results is given in Figure 8, enabling
the contribution of each part of the algorithm to the reconstruction
time to be seen. Including panorama creation time (∼10-20 seconds
per panorama), a reconstruction from 3 panoramic images can be
created in around 1 minute and a reconstruction from 5 panoramic
images in around 2 minutes.
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Figure 8: A split bar graph of the information in Table 1, showing
how split and overall timings are affected by increasing the number
of panoramic images.
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Figure 9: Graz Church. Early preliminary experiments performed as a proof of concept. Left: One of three wide field-of-view images captured
on a tripod mounted webcam. Middle: Point cloud from bundle adjustment. Right: Texture mapped surface model.

Figure 10: Cambridge, UK. 3D reconstruction results generated on the N900, using FAST patch descriptors. Top: Panorama generated free-
hand using PanoMT. 2nd Row: Left to Right: Point cloud and mesh generated from 3 panoramas. Point cloud and mesh generated from 7
panoramas. Blue points represent landmarks, red points represent calculated camera positions. Google Maps aerial view of modelled location.
3rd Row: Rendered novel views of areas in the reconstructed model. Bottom: Reconstructed models using an increasing number of cameras,
from 3 (left) to 7 (right).
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Figure 11: Left: Annotating a panorama with 2D labels during
panorama creation [33]. Middle: Using the 3D model generated us-
ing our pipeline, 2D annotations made on a panoramic image during
panorama creation can be upgraded to 3D annotations. Right: Side
view of reconstructed point cloud model showing depth of labels (the
textured mesh is hidden for clarity).

5.3 Sample AR Application
In order to demonstrate a sample application for this reconstruc-
tion pipeline, the existing use case of 2D panorama annotation as
demonstrated by Wagner et al. [33] was extended to enable the an-
notation of 3D locations. Annotating a point on a panorama dur-
ing panorama creation enables a 2D annotation to be placed on a
panoramic image. The annotation is constrained to a ray emanating
from the optical centre of the panorama through the pixel location
of the annotation. This ray can be intersected with the mesh model
generated by our reconstruction pipeline, thus providing a depth co-
ordinate for the originally 2D annotation. Figure 11 shows a view
of the panorama creation application during labelling and creation
of a panoramic image, as well as the annotations registered in 3D
once the 3D model is constructed.

5.4 Feature Comparison
During our experiments, two different types of feature were used.
Figure 12 shows images of a scene reconstructed using FAST
patches (left) and SURF (right). The distribution of features are
shown below the rendered views. As can be seen, their distribu-
tions are very different, with FAST corners clustering around cer-
tain areas of high intensity change, whilst SURF features are spread
much more evenly throughout surfaces. Using each type of feature
has advantages and disadvantages. FAST features are very stable,
but are not evenly spread out, thus causing loss of detail in cer-
tain areas. On the other hand, SURF features have a much better
spread, but appear to be less stable. Overall, it was observed that
model quality was largely similar, although the extraction of FAST
patches was much faster than the extraction of SURF features, and
thus a higher density of FAST patch descriptors could be extracted
in the background for each cell without affecting the frame-rate of
the panorama creation tool.

5.5 Optical centre translation analysis
Translation of the optical centre during collection of a panorama has
two effects. One effect is that it can cause the seam of the panorama
to overlap, the amount by which is dependent on scene depth and
the amount of translation incurred. This induces a horizontal an-
gular error to rays from the optical centre of the cylindrical camera
to pixels in the image. A diagram of this effect can be seen in Fig.
13. A typical scene of depth ∼10m, with radius of circular optical
centre motion ∼0.05m leads to an angular error from 0 (in the di-
rection of the first image of the panorama) up to ±0.5◦ or 5 pixels
in the image (in the area near the seam). In reality this is lower due
to the first image already filling the 66◦ horizontal field of view of
the N900 with no optical centre motion (image is taken instantly),
and optical centre motion not always accumulating angular error in
the same direction. The second effect of moving the optical centre
is the effect of camera position on the ray angle. Taking a point 10
metres away and 10 metre high (worst case near the vertical limit of

Figure 12: Top: Model reconstructed using FAST patch descriptors
(left) and SURF descriptors (right). Bottom: Distribution of FAST
features (left) and SURF features (right).

field of view), it can be seen that a deviation of 0.05m to the cam-
era’s distance leads to a vertical angular error of 0.15◦ (0.8 pixels).
The main error is thus the horizontal angular error, which could be
reduced by capturing the enlarged panorama and loop closing, then
resampling the image such that it maps back into the correct sized
image (and thus fits into a 360◦ cylindrical panorama).

Figure 13: Angular error arising from optical centre motion. Left:
Yellow and red cylindrical panoramas captured respectively with a
static optical centre and an optical center that moves in a circular
motion as the panorama is being captured. The panoramic image
is captured clockwise for 180 degrees before returning to the centre
and capturing in the anticlockwise direction. Translation in the optical
centre leads to an increase in the size of the cylindrical image which
is dependent on scene depth and radius of motion. Right: when the
red cylindrical image is mapped to the actual size of the panorama
(yellow circle), the image is larger than 360 degrees due to the optical
centre translating, leading to the panorama seam overlapping.

6 CONCLUSION

We presented a novel approach to scene reconstruction on mobile
devices capable of producing dense textured models just several
seconds after panoramic image capture. The area of dense scene
reconstruction on mobile phones is relatively unexplored, and we
provide some of the first reconstruction results demonstrating what
is possible on these devices with very limited computational power.

Our approach employs the use of an easy and user friendly
method of capturing input data through the on-line creation of
panoramic images, and exploits background processing and idle
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processing time between image capturing to reduce final compu-
tation time. The reduction in data redundancy is exploited in order
to be able to generate textured reconstructions in just several sec-
onds on handheld devices, enabling immediate use of these models
in Augmented Reality applications. Results from different datasets
are shown, ranging from full 360 degree panoramas to wide field
of view images of single buildings. We also demonstrate a sample
use case of the reconstruction system, enabling the placement of
3D labels in a scene via simple user interaction during panorama
creation.

In the future, it would be interesting to be able to fuse the sys-
tem with additional mobile phone sensor information such as GPS,
which would allow images to be registered (noisily) to the world
coordinate frame, or the accelerometer, which would enable the
detection of significant motion of the optical center, which could
cause the algorithm to fail. Another avenue for future work would
be the exploration of immediately tracking a scene (in full 6 degrees
of freedom) from the rapidly generated mesh model and landmarks.

ACKNOWLEDGEMENTS

This work was partially funded through the Christian Doppler
Laboratory for Handheld Augmented Reality and the project HY-
DROSYS (EU FP7/DGINFSO grant 224416).

REFERENCES

[1] A. Adams, E.-V. Talvala, S. H. Park, D. E. Jacobs, B. Ajdin,
N. Gelfand, J. Dolson, D. Vaquero, J. Baek, M. Tico, H. P. A. Lensch,
W. Matusik, K. Pulli, M. Horowitz, and M. Levoy. The Frankencam-
era: an Experimental Platform for Computational Photography. ACM
Trans. Graph., 29:29:1–29:12, July 2010.

[2] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Build-
ing rome in a day. 2009 IEEE 12th International Conference on Com-
puter Vision, (Iccv):72–79, 2009.

[3] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg.
Wide area localization on mobile phones. In Mixed and Augmented
Reality, 2009. ISMAR 2009. 8th IEEE International Symposium on,
pages 73–82. IEEE, 2009.

[4] C. Barber, D. Dobkin, and H. Huhdanpaa. The quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software (TOMS),
22(4):469–483, 1996.

[5] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. Computer Vision–ECCV 2006, pages 404–417, 2006.

[6] P. Bunnun and W. W. Mayol-Cuevas. Outlinar: an assisted interactive
model building system with reduced computational effort. In Pro-
ceedings of the 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR ’08, pages 61–64, Washington, DC,
USA, 2008. IEEE Computer Society.

[7] O. Chum and J. Matas. Matching with PROSAC-progressive sample
consensus. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 220–
226. IEEE, 2005.

[8] N. Cornelis, K. Cornelis, and L. Van Gool. Fast compact city model-
ing for navigation pre-visualization. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 2,
pages 1339 – 1344, 2006.

[9] M. Fischler and R. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[10] Y. Furukawa, B. Curless, S. M. Seitz, and
R. Szeliski. Clustering Views for Multi-View Stereo.
http://grail.cs.washington.edu/software/cmvs.

[11] A. Hartl, L. Gruber, C. Arth, S. Hauswiesner, and D. Schmal-
stieg. Rapid reconstruction of small objects on mobile phones. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Embedded Computer Vision Workshop, June 2011.

[12] A. Irschara, C. Hoppe, H. Bischof, and S. Kluckner. Efficient structure
from motion with weak position and orientation priors. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Workshop on Aerial Video Processing, June 2011.

[13] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th
IEEE and ACM International Symposium on, pages 225–234. IEEE,
2007.

[14] G. Klein and D. Murray. Parallel tracking and mapping on a camera
phone. In Proceedings of the 2009 8th IEEE International Symposium
on Mixed and Augmented Reality, ISMAR ’09, pages 83–86, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[15] M. Klopschitz, A. Irschara, G. Reitmayr, and D. Schmalstieg. Robust
incremental structure from motion. In 3DPVT10, 2010.

[16] W. Lee, K. Kim, and W. Woo. Mobile phone-based 3d modeling
framework for instant interaction. In Computer Vision Workshops
(ICCV Workshops), 2009 IEEE 12th International Conference on,
pages 1755 –1762, 27 2009-oct. 4 2009.

[17] D. G. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision, 60(2):91–110, 2004.

[18] Z. Moore, D. Wright, D. E. Schinstock, and C. Lewis. Comparison of
bundle adjustment formulations. American Society for Photogramme-
try and Remote Sensing, 2009.

[19] R. Newcombe and A. Davison. Live dense reconstruction with a single
moving camera. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1498–1505. IEEE, 2010.

[20] D. Nistér. An efficient solution to the five-point relative pose prob-
lem. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 26(6):756–770, 2004.

[21] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic
feature-based on-line rapid model acquisition. In Proc. 20th British
Machine Vision Conference (BMVC). Citeseer, 2009.

[22] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S. Kim, P. Merrell, et al. Detailed
real-time urban 3d reconstruction from video. International Journal
of Computer Vision, 78(2):143–167, 2008.

[23] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch. Visual modeling with a hand-held camera. Int.
J. Comput. Vision, 59:207–232, September 2004.

[24] E. Rosten and T. W. Drummond. Machine Learning for High-Speed
Corner Detection. In European Conference on Computer Vision
(ECCV), 2006.

[25] G. Schindler, P. Krishnamurthy, and F. Dellaert. Line-based structure
from motion for urban environments. In Proceedings of the Third
International Symposium on 3D Data Processing, Visualization, and
Transmission (3DPVT’06), 3DPVT ’06, pages 846–853, Washington,
DC, USA, 2006. IEEE Computer Society.

[26] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring photo
collections in 3D. In ACM SIGGRAPH 2006 Papers, pages 835–846.
ACM, 2006.

[27] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle ad-
justment:a modern synthesis. Vision algorithms: theory and practice,
pages 153–177, 2000.

[28] J. Tukey. Exploratory data analysis. Reading, MA, 1977.
[29] A. van den Hengel, A. Dick, T. Thormählen, B. Ward, and P. H. S.

Torr. Videotrace: rapid interactive scene modelling from video. ACM
Trans. Graph., 26, July 2007.

[30] A. van den Hengel, R. Hill, B. Ward, and A. Dick. In situ image-based
modeling. In Mixed and Augmented Reality, 2009. ISMAR 2009. 8th
IEEE International Symposium on, pages 107–110. IEEE, 2009.

[31] V. Varadarajan. Lie groups, Lie algebras, and their representations.
Prentice Hall, 1974.

[32] J. Ventura and T. Höllerer. Online environment model estimation for
augmented reality. In Mixed and Augmented Reality. IEEE/ACM In-
ternational Symposium on, New York, NY, USA. Citeseer, 2009.

[33] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-time
panoramic mapping and tracking on mobile phones. VR, 2010.

64


