Rapid rendering of apparent contours of implicit surfaces for real-time tracking.

Ed Rosten, Tom Drummond

University of Cambridge

Curved surfaces

- Why?
 - Many real-life objects are not polyhedral.
 - $\circ\,$ We want to track them.
- Real time tracking
 - $\circ\,$ Need an efficient way of dealing with them.

Representing curved surfaces

- Polyhedral approximation.
 - $\circ\,$ Needs lots of polygons.
- Quadrics (and other curved primitives)
 - Works best for quadric-shaped objects.

Implicit surfaces

Surface defined by $f(\underline{\mathbf{x}}) = 0$, where $f(\underline{\mathbf{x}})$ is a scalar field.

- $f(\underline{\mathbf{x}})$ is a sum of primitives.
 - We use Gaussians.

- Advantage: Very general purpose.
- **Disadvantage**: Difficult to deal with.

Implicit surfaces

Surface defined by $f(\underline{\mathbf{x}}) = 0$, where $f(\underline{\mathbf{x}})$ is a scalar field.

- $f(\underline{\mathbf{x}})$ is a sum of primitives.
 - We use Gaussians.

- Advantage: Very general purpose.
- **Disadvantage**: Difficult to deal with.

Using implicit surfaces

- Need to choose a feature to track.
- Apparent contour is the key feature.

• For real-time tracking, this must be calculated rapidly.

Which points lie on the apparent contour?

1. Point is on the surface:

•
$$f(\underline{\mathbf{x}}) = 0.$$

2. Viewing ray is tangent to the surface:

•
$$\nabla f(\underline{\mathbf{x}}) \cdot \underline{\mathbf{x}} = 0.$$

3. Point is not occluded by the shape.

Approach

1. Solve the first two conditions first.

2. Then find which parts are visible.

- Simple, inefficient methods
 - 1. Test all space.
 - 2. Precompute surface points then test each one.
- We present an efficient method
 - Generate whole contour from starting point.
 - Can derive a differential equation to do this.

- Conditions for point on apparent contour: $f(\underline{\mathbf{x}}) = 0$ $\nabla f(\underline{\mathbf{x}}) \cdot \underline{\mathbf{x}} = 0$
- We present an efficient method
 - Generate whole contour from starting point.
 - Can derive a differential equation to do this.

- Conditions for point on apparent contour: $f(\underline{\mathbf{x}}) = 0$ $\nabla f(\underline{\mathbf{x}}) \cdot \underline{\mathbf{x}} = 0$
- We present an efficient method
 - Generate whole contour from starting point.
 - Can derive a differential equation to do this.

 $\circ \ \underline{\dot{\mathbf{x}}} = \mathcal{H}[f(\underline{\mathbf{x}})] \, \underline{\mathbf{x}} \times \nabla f(\underline{\mathbf{x}})$

• Differential equation for the apparent contour:

 $\circ \ \underline{\dot{\mathbf{x}}} = \mathcal{H}[f(\underline{\mathbf{x}})] \, \underline{\mathbf{x}} \times \nabla f(\underline{\mathbf{x}})$

• Solve with 4th order Runge-Kutta solver.

- Differential equation needs boundary conditions.
- Precompute sparse point set on the surface.
- Find a point where \$\vec{\nabla} f(\mathbf{x}) \cdot \mathbf{\x}}{\mathbf{x}} \approx 0\$
 o Move it on to the contour.
- Avoid calculating contours more than once.
 - Reject points near existing contours.
 - Efficient rejection using fast search.

Approach

- 1. Solve the first two conditions first.
- 2. Then find which parts are visible.

Contour visibility

- Contours are correctly drawn.
- Too much is visible.

- Search for surface along ray is *very* inefficient.
- Strong constraints on how the visibility can change.

Contour visibility

- Contours are correctly drawn.
- Too much is visible.
 - Intersection

- Search for surface along ray is *very* inefficient.
- Strong constraints on how the visibility can change.

Contour visibility

- Contours are correctly drawn.
- Too much is visible.

- Search for surface along ray is *very* inefficient.
- Strong constraints on how the visibility can change.

Defined as: The number of surfaces between a point on the apparent contour and the camera.

• Depth can change by ± 2 at an intersection.

• This corresponds to an occlusion.

Defined as: The number of surfaces between a point on the apparent contour and the camera.

• Depth can change by ± 2 at an intersection.

• This corresponds to an occlusion.

Defined as: The number of surfaces between a point on the apparent contour and the camera.

• Depth can change by ± 2 at an intersection.

• This corresponds to an occlusion.

Defined as: *The number of surfaces between a point on the apparent contour and the camera.*

• Depth can change by ± 1 at a cusp

Ray starts inside the torus

Constant of integration

This cannot be determined completely without searching.

Avoiding searches

The amount of searching can be further reduced.

A partially hides B
Searching shows C hides A
A is hidden
∴ B is hidden

Tracking the contour

• Image motion of contour due to:

- Change in viewpoint.
- Slip of contour.

- Tracking system linearizes image motion with respect to 6 pose parameters.
- Slip is not visible in linear approximation.

- 1. The tracker in operation.
- 2. Lamp rendered from the camera's view.
- 3. A synthetic view from in front of the lamp.

Any questions?