
Fusing Points and Lines for High Performance Tracking

Edward Rosten and Tom Drummond
{er258|twd20}@eng.cam.ac.uk

Department of Engineering, University of Cambridge
Cambridge, CB1 2BZ, UK

Abstract

This paper addresses the problem of real-time 3D model-
based tracking by combining point-based and edge-based
tracking systems. We present a careful analysis of the prop-
erties of these two sensor systems and show that this leads
to some non-trivial design choices that collectively yield
extremely high performance. In particular, we present a
method for integrating the two systems and robustly com-
bining the pose estimates they produce. Further we show
how on-line learning can be used to improve the perfor-
mance of feature tracking. Finally, to aid real-time perfor-
mance, we introduce the FAST feature detector which can
perform full-frame feature detection at 400Hz. The combi-
nation of these techniques results in a system which is capa-
ble of tracking average prediction errors of 200 pixels. This
level of robustness allows us to track very rapid motions,
such as 50◦camera shake at 6Hz.

1. Introduction

While substantial advances have been made in the do-
main of real-time visual tracking, there is still a need for
systems which can tolerate the very rapid translations, ro-
tations and accelerations that occur in unconstrained hand-
held use in scenes with substantial unmodeled clutter. These
motions lead to large prediction errors and to cope with
this, we propose a method for combining the two popular
approaches to tracking, namely point-based and line-based
tracking.

These two techniques have very different statistical prop-
erties; they have different failure modes, exhibit different
error structures and have differing requirements for their op-
eration. By analysing these properties, we show that care-
ful integration can achieve more than simply combining the
two systems in a big linearizing filter (such as an EKF). This
analysis is presented in Section 2 in terms of the precon-
ditions and postconditions of each of the two approaches.
Their combination is described in Section 3 and the statisti-
cal techniques required are detailed in Section 4.1. We also

present a practical contribution, in the form of an extremely
efficient feature detector and matching system in Section 5.
Results from the combination of these techniques, are pre-
sented in Section 6.

1.1. Background

Point features have strong characteristics and this makes
it relatively easy to localize them and to find correspon-
dences between frames. This makes point-based systems
robust to large, unpredictable inter-frame motions. How-
ever, over several frames the appearance of a feature point
can change substantially, due to the change in scene struc-
ture relative to the camera. Although features which are
invariant to scaled Euclidean [11] or affine [13] transforma-
tions exist, it is not always advantageous to use them be-
cause they can be expensive to compute and the invariances
reduce their ability to discriminate [17]. These changes in
appearance can lead to matching errors and drift in the pose
estimate over time.

Point features can be used with [18] or without [2] a sur-
face model. Using a surface model means that larger num-
bers of feature points can be used to assist pose estimation
while retaining real-time performance: given a pose esti-
mate, their 3D position can be obtained by back projection
onto the surface. However, errors in the position of the sur-
face create 3D point position errors which lead to an ampli-
fication of pose drift.

One method for removing (or reducing) drift is presented
in [18] which couples the surface model with the use of
keyframes to provide a global database of the 3D position
and appearance of feature points. However, populating a
large immersive 3D environment with a sufficient number
of keyframes would be both difficult and very time con-
suming. Further, in many environments, the clutter which
gives rise to most feature points (e.g. the clutter on desks in
an office environment) changes over medium — to long —
term time scales, even if the surface model remains approx-
imately correct. The system presented here instead uses line
features to avoid drift.

Line features [5, 1, 10] and their descriptor (a gradient

in intensity) are stable under a very wide range of lighting
conditions and aspect changes. It is precisely this invari-
ance which makes the feature non discriminative, and it is
therefore difficult to find correspondences. As a result it is
difficult to track edges robustly.

The usual solution — assuming that the closest edge to
the expected edge position is the correct match — can lead
to a large number of correspondence errors if the motion is
large, although [4] alleviates this somewhat by using a ro-
bust estimator. [12] operates by first finding the 2D motion
of the object, and then the full 3D pose, once the object is
in nearly the correct place. The approach is also adopted by
[9] and [17], who both find the 2D motion of the object by
matching features between frames and then use this to ini-
tialize an edge based tracker. [9] uses a simple combination
of measurements from the feature tracker, which minimizes
a weighted sum of edge errors and feature errors.

2. Sensor analysis

In order to combine these two approaches for pose es-
timation, it is first necessary to look in more detail at the
preconditions and postconditions for each in order to un-
derstand the difference in statistical behavior. We present
first a summary of these in order to provide a reference for
the discussion that follows.

Point based tracking
Preconditions

P−
13D point cloud/model.

Postconditions
P+

1Produces robust differential measurements...
P+

2...with approximately Gaussian posterior.
P+

3Posterior measurement covariance is inaccurate.

Edge based tracking
Preconditions

E−
1Geometric 3D edge model.

E−
2Accurate pose prior.

Postconditions
E+
1Non-Gaussian posterior.

E+
2Drift-free measurement.

2.1. Point features

Condition P−
1 : In Section 1.1 we argued that obtaining

a static point cloud for large scenes is unfeasible. As a re-
sult, it it necessary to dynamically learn this model and this
is achieved by back-projection onto a geometric 3D surface
model. Because there are no static features in this point
cloud, the tracker can only produce differential pose mea-
surements (Condition P+

1).
Condition P+

2 arises because we can determine which
point matches are correct and which are not with high prob-
ability (see Section 4.1 and Section 4.2). The measurement

−0.1 0 0.1
−0.02

−0.01

0

0.01

0.02

Motion (parameter 5)

E
rr

or
 in

 m
ot

io
n

(p
ar

am
et

er
 6

)

−0.1 0 0.1
−0.2

−0.1

0

0.1

0.2

Error in motion (parameter 2)

E
rr

or
 in

 m
ot

io
n

(p
ar

am
et

er
 3

)

Figure 1: The errors between the point tracking posterior and
the ground truth are well modeled by uncorrelated statistics. To
demonstrate this, the two strongest correlations have been shown
and even these are only weakly correlated.

errors of the inliers are mostly due to pixel quantization (we
do not use a sub-pixel feature detector—see Section 5) and
so are independent. The likelihood therefore approaches a
Gaussian distribution by the central limit theorem.

Condition P+
3 : although the measurement errors are in-

dependent, the errors in the 3D point cloud are not. Points
detected on unmodeled structural clutter are back-projected
on to the closest modeled plane, which is almost always fur-
ther from the camera than the clutter. The result is that any
errors in the 3D point cloud may well be strongly correlated,
and it is therefore we find that the covariance obtained from
the point matches is inaccurate. As a result we must model
the covariance. We consider two models for the covariance.
The first model is that the covariance, C, can be modeled as
a function of the motion, µ:

C = A + BµµTBT (1)

We test this by using data which is obtained from a sequence
where the pose is found by manual alignment in each frame.
We find that A is largely diagonal, and B consists of only
very small values. The data corresponding to the largest
off-diagonal element of A and the largest element of B is
shown in Figure 1. The second model we consider assumes
that the shape of the covariance obtained from the data (see
Section 4.1) is correct, but that it is over-saturated by a con-
stant, k. The most likely value of k maximizes the log-
likelihood of the data and is given by:

k = argmin
k

(
−

∑
i

ei
T(kCi)−1ei − ln

√
(2π)6|kCi|,

)

(2)
where Ci is the computed covariance for frame i and ei is
the 6 DOF pose error for frame i, obtained from the ground
truth data. We find that k ≈ 7200.

2.2. Edge tracking

Condition E−
1 : in order to perform edge tracking we

must have a 3D edge model of the object to be tracked

C

D
E

A
B

Figure 2: Left: model in the correct position. Right: edge tracking
fails because model edges A and B lock on to image edge B and
model edges C and E lock on to image edge D.

(this is the model on to which features are projected for
Condition P−

1). The model is created by hand. Edge
features are invariant to lighting and perspective changes,
hence the model can remain static. Because we have this
absolute model the measurements obtained will be drift-
free(Condition E+

2). Highly invariant features are not dis-
criminative, so in order to avoid incorrect edge correspon-
dences, we require a strong prior on model pose, and hence
image edge position (Condition E−

2). Even with this, edges
can still be detected incorrectly, as illustrated in Figure 2.
These incorrect measurements will often be strongly corre-
lated and hence the pose estimate will contain a large error.
The correlation in the error means that the posterior pose
does not approach a Gaussian by the central limit theorem
(Condition E+

1). We therefore model this distribution as a
two component GMM (Gaussian Mixture Model), consist-
ing of a narrow Gaussian (the distribution of poses where
the correspondences are correct) and a very broad Gaussian
(the distribution when edge correspondences are incorrect).

3. Sensor fusion

Both feature based and edge based tracking have fail-
ure modes, but these are complementary and so combining
them leads to a more robust system. Because of the non-
Gaussian statistics of the system, measurements can not be
trivially fused by using linear techniques such as Kalman
filtering, so several strategies are needed to robustly com-
bine the measurements. The above analysis leads to the fol-
lowing conclusions:

1. Points are robust to large motions (Condition P+
1),

and lines need reasonably accurate initialization (Con-
dition E−

2) hence points should be treated first and
lines second.

2. The statistics of line measurement are non-Gaussian
(Condition E+

1) so a non-linear filter is needed

3. Under large aspect changes, point appearance can
change substantially, so a system which estimates in-
lier probability for each point would be beneficial.

−5 0 5
0

0.005

0.01

0.015

x

p(
x)

Gaussian prior
GMM liklihood
Miltimodal posterior

Figure 3: A 1 dimensional example of a Gaussian prior combining
with a mixture model likelihood to produce a multimodal poste-
rior.

The pose estimate covariance Ca and point cloud (Con-
dition P−

1) from the previous frame are used. The point
tracker adds a differential measurement (Condition P+

1) re-
sulting in a posterior covariance Cb = Ca + kCf , where
Cf is the covariance measured by the feature point tracker
(see Section 4.1).

The brittle, but precise edge tracker is initialized (Condi-
tion E−

2) using robust differential measurements from Con-
dition P+

1 , as in [8]. We use the tracker described in [4],
but with edge threshold used is normalized by image in-
tensity. We also perform multiple iterations of the tracker
per frame, which is similar to the system described in [9],
except that we linearize between iterations. Since the like-
lihood of the edge based tracker is a two-component GMM
(Condition E+

1) and the prior is a Gaussian, the posterior,
ppost,c is also a GMM which may have two modes (see Fig-
ure 3). This posterior for pose is then used to obtain the 3D
point cloud needed for the next frame. Since the posterior
can be bimodal, a separate point cloud is generated for each
mode. Note that if the edge tracker is correct, this estimate
of posterior pose is drift-free (Condition E+

2).
If both modes were to be propagated all the way through

the next iteration, exponential mixture component explo-
sion would follow since edge tracking doubles the number
of mixture components at each iteration This is avoided by
comparing the performance of each point cloud on the sub-
sequent point tracking stage. The GMM that gave rise to the
point clouds gives their relative probability, while the differ-
ence in residual error in point tracking provides an estimate
of their likelihoods. These are then combined and only the
Gaussian component (and associated point cloud) with the
highest posterior probability is retained for the edge track-
ing stage. The algorithm described above is summarized
below:

1. A new frame arrives and point features are detected.
2. Correspondences are found between the new features

and existing features on the model.
3. The probability that a match is correct is computed

from the correspondence score.

Frame 752 Frame 753 Frame 754

A
B

Figure 4: Three consecutive video frames are shown while the
model rotated rapidly (about 720◦/s) around its centre. The out-
line indicates the position of the model in the previous frame. Fea-
tures on face A change appearance and features on face B change
shape significantly.

4. The pose is robustly computed for both modes, and the
most probable mode is kept.

5. The new pose is used to initialize and run an edge
tracker.

6. The features are back-projected on to the model.
7. The learned relationship between matching score and

matching probability is updated based on the posterior
match probability.

We use a calibrated camera (with modeled radial distortion).
The test system used for timings is a P4 Xeon at 2.4GHz.
The video sequences consist of 768 × 288 pixel fields from
a 50Hz PAL source.

4. Feature tracking
4.1. Position optimization

Under large frame-to-frame motions, such as the one
shown in Figure 4, feature points can change appearance
significantly and this typically leads to a large number
of mismatched features. In some sequences, consecutive
frames have as few as 10% of points matched correctly.
Although we are using the crude (but fast) point detector
and matcher detailed in Section 6, points from these frames
were analysed using SIFT[11] and a similar matching per-
centage was obtained.

In classical Bayesian fashion, the most likely model pa-
rameters are computed by maximising the probability of the
observed data given the parameters (multiplied by a weak
prior over the parameters). In frame n, we have two sets
of features: one set of features on the model, FO,n (ex-
tracted in the previous frame, and reprojected under a mo-
tion µ), and another set, FI,n, which have been extracted
from the image. Between these features, we have a set of
matches M = {m1, ...,mN}, where a match is given by
mi = {fO,i, fI,i}, where fO,i ∈ FO,n and fI,i ∈ FI,n.

The set of matches can be regarded as being made up of
correct matches, MΥ, and incorrect matches, MΦ.

If mi ∈ MΥ, then fI,i is in the same place that fO,i

projects to under the motion to be recovered, with some
added measurement noise. If mi ∈ MΦ then fI,i can appear
anywhere in the image, with approximately uniform prob-
ability. If ei is the Euclidean distance between fO,i and

Image 1 Image 2

Model Points
Image points
Matches

Figure 5: A synthetic example of feature matching between
frames, where the model has a single parameter. Only a small
fraction of the data is shown.

−30 −15 0 6 15 30
−10

−5

0

µ
lo

g
pr

ob
ab

ili
ty

 d
en

si
ty

data|µ,σ
data|µ,σ=σ

em

Figure 6: Probability density of observing M for the one dimen-
sional example. PDFs are shown for the known value of σ, σg and
where EM converges, σem, at the known value of α. The correct
value of µ is 6.

fI,i in the image, then the PDF of observing the matches is
given by:

p(M |µ) =
N∏

i=1

(1 − α)
A

+ α
e(− ei

Tei
2σ2)

2πσ2
, (3)

where A is the image area, α is the expected proportion of
good matches and σ is the measurement noise. In theory,
one method for finding the most likely µ is to use iterative
reweighted least squares (IRWLS) where the reweighting
function is the posterior probability that a match is an inlier.

In practice, with a large number of mismatches, IRWLS
will often not succeed because of local maxima in the like-
lihood. We will demonstrate this with a one-dimensional
example. We start by placing points randomly on the unit
circle, giving FO. The model is then rotated by µ radi-
ans, which is the parameter to be determined. To simu-
late matching, the new positions of the points are either
corrupted by Gaussian noise with variance σ2, or scattered
about the unit square (Figure 5), giving FI .

The likelihood of the data given µ and the correct value
of σg is shown in Figure 5 and visibly contains many local
maxima with the absolute maximum being a very narrow
peak. Hence, in order to find the maximum, it is neces-
sary to use a technique which is robust to local maxima.
Generalized Monte-Carlo based techniques such as simu-
lated annealing[7] escape local optima easier by randomly

µ

σ

−30 −15 0 6 15 30
0.9

 30

 60

 90

120

150
log p(data|µ)
First optimize
Second optimize
Local minima

−18

−16

−14

−12

−10

−8

−6

−4

−2

Figure 7: The greylevel plot shows the likelihood of the data given
the model parameter, µ, for different levels of blur with the known
value of α. the bottom row in this plot is the same as the graph in
Figure 6. The graph also shows the path that EM takes through
this space. The calculated values for α are not shown.

perturbing the system. Perturbations are accepted with a
probability based on how energetically favorable it is to
accept the perturbation. At higher temperatures, the cost
function is raised to a small power, making perturbations
more likely to be accepted. As the system is annealed, the
power is increased, making it harder to escape. However,
in this case, optimum is very narrow, so there is only a very
small probability that a perturbation, or indeed any particle
based method, will land in the optimum. Instead, it would
be preferable to make the correct peak broader by convolv-
ing the likelihood with a Gaussian to blur it. This gives the
following PDF:

p(mi|µ) =
(1 − α)

A
+ α

e
(− ei

Tei
2(σ2+σ2

b
)
)

2π(σ2 + σ2
b)

, (4)

where σb is the size of the blur. This is equivalent to using
a value of σ larger than the true value. Because for large
σ, the peak will not be in the correct place, a schedule is
needed to reduce it to its correct value and the most effective
way to do this is by using the EM (Expectation Maximiza-
tion) algorithm[3] to find a PDF which fits the data. This is
convenient because it gives us a framework for calculating
unknown variables such as the true value of α and σ. This
is illustrated in Figure 7.

In the presence of large amounts of noise, the EM algo-
rithm can converge on a solution where σ is too large, as
shown in Figure 6. Although the precise value of σ is un-
known, we know its approximate value; a large proportion
of the measurement error comes from pixel quantization,
hence σ ∼ 1pixel. If EM converges to σ2 � 1, then the
optimization is given a ‘kick’ downwards by forcibly low-

0 2500 5000
0

0.5

1

Sum squared differenceP
ro

ba
bi

lit
y

of
 c

or
re

ct
 m

at
ch

Raw data
Temporally smoothed
Function
Frames 100−760

Figure 8: Graphs showing the function which maps SSD to match
probability. The function, temporally smoothed and raw data are
given for frame 200.

ering σ, and recomputing α. The effect of this is shown in
Figure 7.

EM jointly optimizes the posterior probability P (mi ∈
MΥ) for each point. Since we have a prior estimate of this
from the matching score (see Section 4.2) the posterior be-
comes:

P (mi ∈ MΥ) =
PpαpΥ

(1−Pp)(1−α)
A + Ppα

(5)

where

Pp =Pprior(mi ∈ MΥ)

and

pΥ =
e
(− ei

Tei
2(σ2+σ2

b
)
)

2π(σ2 + σ2
b)

.

The covariance of the posterior pose is:

Cf =

(
σ2

∑
i

P post(mi ∈ MΥ)Ji
TJi

)−1

, (6)

where J is the Jacobian relating image motion (in pixels) of
a point to the motion parameters.

We note that Guided[15] MLESAC[16] could be used
here instead of EM, and would take in the same prior in-
formation and produce an equivalent posterior. It is unclear
which would be computationally more efficient, but the cur-
rent system is sufficient for real-time operation.

4.2. Calculation of the match prior from SSD

For a given feature point in FO, fn, its correspondence
is calculated by finding the feature point in FI which mini-
mizes the sum squared difference (SSD) of the feature vec-
tor between the feature points. The SSD is a measure of
difference in appearance of the two feature points, and we
make the intuitive assumption that of all the features in

15

11
10

16

14
13
12

1 2

9 8
7

6
5
4

3

C

Figure 9: FAST Feature detection in an image patch. The high-
lighted squares are the pixels used in the feature detection. The
pixel at C is the centre of a detected corner: the dashed line passes
through 12 contiguous pixels which are brighter than C by more
than the threshold.

frame n + 1, those that look most like fn (have the smallest
SSD) are the most likely to be correctly matched. In other
words, there is likely to be a relationship between the SSD
and the probability that the feature match represents an in-
lier. We make explicit use of this relationship by on-line
learning of a dynamic function which maps SSD to inlier
probability.

One outcome of the EM algorithm used in Section 4.1 is
the posterior probability that each match is correct. This in-
formation along with the SSD values for each match can be
used to provide an estimate of the relationship between SSD
and inlier probability for the next frame. This is achieved
by binning the SSD scores and computing the average in-
lier probability for each bin. To compensate for the limited
amount of data in each frame (especially for large SSD val-
ues), this data is temporally smoothed with a time constant
of 10 frames. A cubic polynomial is then fitted to the result-
ing values and this is used as the SSD to inlier probability
function for the next frame. This technique provides a dra-
matic improvement in the performance of the point tracker,
and the results of this can be seen in Figure 8. This figure
also illustrates the substantial range of possible functions
that can be generated over time, hence the necessity to use
dynamic learning at each frame.

5. FAST feature detection and matching

The robust optimization described in Section 4.1 allows
us to trade off the quality of corner detection and matching
for speed. We present here the FAST (Features from Accel-
erated Segment Test) feature detector1. This is sufficiently
fast that it allows on-line operation of the tracking system.
A test is performed for a feature at a pixel p by examining
a circle of 16 pixels (a Bresenham circle of radius 3) sur-
rounding p. A feature is detected at p if the intensities of

1Source code available in the libcvd library, hosted on
http://savannah.nongnu.org/projects/libcvd

Figure 10: FAST Feature detection in a typical frame. Positive
corners are indicated by and negative corners are indicated by

. The threshold is 25.

Detector FAST SUSAN Harris
Time (ms) 2.6ms 11.8ms 44ms

Table 1: Time taken to perform feature detection on a PAL field
(768 × 288 pixels) on the test system. The SUSAN[14] detector
used is the reference implementation. The Harris[6] detector code
was optimized to use the SSE vectorising instructions.

at least 12 contiguous pixels are all above or all below the
intensity of p by some threshold, t. This is illustrated in
Figure 9. The test for this condition can be optimized by
examining pixels 1, 9, 5 and 13, to reject candidate pixels
more quickly, since a feature can only exist if three of these
test points are all above or below the intensity of p by the
threshold. With this optimization, on a sample sequence of
video, the algorithm presented examines, on average, 3.8
pixels to test if there is a feature at a given location.

This type of corner detection naturally leads to using the
pixel intensities from the 16 pixel circle as a feature vector.
It further follows that features can be categorized as positive
(where the pixels are greater than the center) and negative.
This partitioning is useful since positive features need not
be compared to negative ones.

The result of corner detection on a typical frame is shown
in Figure 10. In Table 1 we present the speed of the FAST
feature detector for a ‘typical’ sequence. The number of
features detected and hence the speed of detection is deter-

0 25 50 75 100
0

200

400

600

800

Corner Threshold

F
ra

m
es

 p
er

 s
ec

on
d

0 25 50 75 100
10

0

10
1

10
2

10
3

10
4

10
5

Corner Threshold

C
or

ne
rs

 p
er

 fr
am

e

Figure 11: Graphs showing how the speed of corner detection and
number of corners vary with the corner threshold. Because the
corner detector is able to reject unsuitable candidates quickly, the
speed is related to the number detected.

10
−2

10
−1

10
0

0

0.5

1

Proportion of inliersP
ro

ba
bi

lit
y

of
 c

on
ve

rg
en

ce

EM
EM with prior

Figure 12: The synthetic results demonstrate that having a good
estimate of P (mi ∈ MΥ) greatly improves the probability of a
successful convergence.

mined by the threshold. The Figure 11 shows how these
vary with the threshold.

5.1. Feature matching

For fast matching, it is important to avoid the O
(
N2

)
cost of testing every feature against every other feature. To
do this, FI is sorted by the mean value of the feature vectors,
f . When matching a feature, fO,j , we use binary search to
find the feature in FI with the closest mean, from which a
linear search is performed. The the SSD is bounded by

SSD(fO,j , fI,i) ≥ l (fO,j − fI,i)2 (7)

where l is the number of elements in the feature vector
(transforming the basis of the vectors and comparing the
first elements gives this result) . This bound can be used to
rapidly terminate the linear search.

The time taken to perform SSD is reduced by applying a
transformation to the feature vectors which compacts most
of the energy into the first few elements. This permits rapid
rejection of potential matches without computing the full
SSD. Each frame, a transformation which performs optimal
energy compaction can be found, but any gains this might
have are more than offset by the time taken to find the rota-
tion (43ms on the test system). Further, in general, rotation
can only be applied with an O

(
N2

)
matrix multiplication.

Instead, we use specific ones which can be applied with
a fast O(N log N) transform. We have tried the Discrete
Cosine Transform and the Harr Wavelet Transform. The
performance is very similar, but the Harr transform can be
computed more efficiently.

We have found that for our typical scenes (500–1500
points, with 16 element feature vectors) this method is faster
than a k-d tree, since very highly optimized sorting algo-
rithms are available and computing SSD is very fast.

6. Results
6.1. Synthetic test of point tracking

The robust optimizer is tested using synthetically gener-
ated data:

1. Place the virtual model in view of the virtual camera.
2. Synthesize corner detection by scattering points about

the virtual camera frame, keeping the ones which land
on the model.

3. Generate a random motion.
4. Reproject the points (with quantization error) after the

motion to simulate point matching.
5. Generate a probability that the match is correct. This

corresponds to a probability obtained from the SSD.
6. Mismatching is simulated by making some of the

points match to a random location in the image. The
probability of this happening is based on the generated
prior.

7. Optimize the position to find the motion.
8. Test the result against the known motion.

The random motion corresponds to a rotation of up to
15◦and approximately 200 pixels of image motion due to
translation. We generate 1000 virtual matches in each frame
of which about 400 lie up on the model. Figure 12 shows
the synthetic results. Without a good prior of P (mi ∈ MΥ),
10% inliers yields a 50% probability of convergence. With
a good estimate, only 3% inliers are needed to yield a 50%
probability of convergence. This is important because we
frequently experience frames with only 10% inliers, and if
the probability of convergence was only 50%, the sytem
would fail frequently. Instead, it succeeds 99% of the time.

6.2. Tests on video sequences

The ability of the tracking system to deal with large inter-
frame translations is shown in Figure 13. The two frames
illustrated were tracked in isolation. The average image mo-
tion of point features between the two frames is 89 pixels,
and the image motion of the edges closest to the camera is
over 400 pixels.

This illustrates not only that the system is capable of
dealing with large inter-frame motions, but also that it is
capable of dealing with large amounts of structural clutter
without failing. Figure 14 shows the tracker dealing with
large inter-frame rotations, in the same scene. The aver-
age image motion throughout the scene is 79 pixels and the
largest average image motion of a single frame is just over
204 pixels. In this sequence, a zero order motion model is
used (no velocity information is tracked) and indeed, such a
velocity model is unlikely to be of much use since the cam-
era experiences angular accelerations of up to 88,500◦s−2.

Further results are given in the supplementary videos,
multimodal.mpg and lab.mpg. multimodal.mpg
shows tracking in the presence of many strong unmodeled
edges, and also under heavy occlusions. The video shows a
side -by-side comparison of a naı̈ve method of sensor fusion
(point tracking followed by line tracking) and the method
described in Section 3. lab.mpg is an extended sequence

Figure 13: This shows the system tracking system coping with
large translations. These consecutive frames are taken 1m apart,
corresponding to a speed of 50ms−1 (112mph). In this scene, only
the vertical partitions are modeled. As a result, a large number of
the visible features (such as the contents of the desks) are structural
clutter. The outline of the modeled geometry is shown.

0 0.5 1 1.5 2 2.5 3
−50

0

50

100

Time / s

A
ng

le
 /

de
gr

ee
s

Figure 14: Graph showing the angle of a handheld camera un-
dergoing vigorous rotational shaking at approximately 6Hz. The
limiting factor is the rate and range over which the author could
shake the camera.

of the scene in Figure 13 being tracked from a handheld
camera. The maximum tracked speed is 12ms−1.

7. Summary and Conclusions

This paper presents a high performance tracking system
based on the combination of two different tracking systems
with complementary behavior and very different statistics.
By employing a careful analysis of the requirements and be-
havior of these systems, their synthesis into a single system
has been enhanced. This includes the use of one system to
initialize the other, a non-linear method for combining the
two posteriors as well as a method for on-line learning of
the relationship between sum-squared difference and inlier
probability for the point tracker. We have also presented a
fast feature extraction and matching algorithm.

References

[1] M. Armstrong and A. Zisserman. Robust object tracking.
In Asian Conference on Computer Vision, volume I, pages
58–61, Singapore, 1995.

[2] A. Davison. Real-time simultaneous localisation and map-
ping with a single camera. In International Conference of
Computer Vision, Nice, Oct. 2003.

[3] A. Dempster, N. Laird, and R. D.B. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, B 39:1–38, 1977.

[4] T. Drummond and R. Cipolla. Real-time visual tracking of
complex structures. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):932–946, 2002.

[5] C. Harris and C. Stennett. RAPID, a video rate object tracker.
In 1st British Machine Vision Converence, pages 73–77, Ox-
ford, Sept. 1990.

[6] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey Vision Conference, pages 147–151, 1988.

[7] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. Science, 220, 4598(4598):671–680,
May 13th 1983.

[8] G. Klein and T. Drummond. Tightly integrated sensor fu-
sion for robust visual tracking. Image and Vision Computing,
22(10):769–776, Sept. 2004.

[9] P. F. L. Vacchetti, V. Lepetit. Combining edge and texture
information for real-time accurate 3d camera tracking. In
International Simposium on Mixed and Augmented Reality,
Jacksonville, USA, 2004.

[10] D. Lowe. Robust model-based motion tracking through the
integration of search and estimation. International Journal
of Computer Vision, 8(2):113–122, Aug. 1992.

[11] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, Nov. 2004.

[12] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau.
Robust real-time visual tracking using a 2D-3D model-based
approach. In International Conference of Computer Vision,
volume 1, pages 262–268, Sept. 1999.

[13] F. Schaffalitzky and A. Zisserman. Viewpoint invariant tex-
ture matching and wide baseline stereo. In 8th International
Conference of Computer Vision, pages 636–643, Vancouver,
Canada, July 2001.

[14] S. Smith and J. Brady. SUSAN - a new approach to low level
image processing. International Journal of Computer Vision,
23(1):45–78, May 1997.

[15] B. Tordoff and D. Murray. Guided sampling and consensus
for motion estimation. In 7th European Conference on Com-
puter Vision, Copenhagen, June 2002.

[16] P. Torr and A. Zisserman. MLESAC: A new robust estimator
with application to estimating image geometry. Computer
Vision and Image Understanding, 78:138–156, 2000.

[17] B. L. V. Gouet. Sap: A robust approach to track ob-
jects in video streams with snakes and points. In 15th
British Machine Vision Converence, volume 2, pages 737–
746, Kingston Upon Thames, Sept. 2004.

[18] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3d track-
ing using online and offline information. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(10):1385–
1391, 2004.

