
High performance rigid body
tracking

Edward Rosten

Churchill College

University of Cambridge

Dissertation submitted for the degree of
Doctor of Philosophy

February 2006

./figs/shield.eps

Declaration

This dissertation is submitted to the University of Cambridge in partial fulfilment
for the degree of Doctor of Philosophy. It is an account of work undertaken at the
Department of Engineering between October 2002 and January 2006 under the
supervision of Dr T.W. Drummond. The work described is original and a result
of my own work, except where stated to the contrary. This dissertation contains
47 figures and is approximately 33,000 words in length. No part of it has already
or is being currently submitted for any other qualification at any other university.

Edward Rosten

i

Acknowledgements

I would sincerely like to thank my supervisor, Tom Drummond and the members
of the Fallside Lab: Georg Klein, Christopher Kemp, Timothy Gan, Ethan Eade
and Gerhard Reitmayr for making it an amazing and fun place to work, as well
as their help with computer vision in general, papers, hacking and bugs, not
to mention many entertaining coffee breaks. A mention must also go to Georg
Klein for writing “gvars” and saving many hours of compiling and Paul Smith in
addition to those named above for their help in making libCVD what it is today.

Thanks must go to Susan for help, patience and taking the time to understand
my work.

I finally wish to thank my family, Esther, Oliver and Judith for their support,
and dedicate this thesis (and especially its contents page) to my father, Harvey.

iii

Abstract

Many potential applications of computer vision require a 3D tracking system
which can cope with very unpredictable, rapid motions of the camera while op-
erating at frame rate. This cannot be achieved using previously available tech-
niques. Robustness in tracking is achieved by combining different systems in a
non trivial way. This allows trackers to be designed in such a way that they are
not general purpose trackers, but instead excel at some other chosen property.

The problem of robustness is addressed by the development of a point based
tracking system which uses high speed techniques for point detection and match-
ing (allowing it to operate on full size frames) combined with a robust optimizer.
This, coupled with a system which estimates the quality of a match, allows the
system to track very rapid, unpredictable motions with considerable amounts of
noise.

The full-frame extraction of feature points is vital to the robustness of the system.
Machine learning is used to derive a feature detector which is significantly faster
than previous methods. The repeatability of extracted features has been verified
by comparison to other detectors. Despite being principally constructed for speed,
the detector significantly outperforms existing feature detectors.

The problem of tracking curved surfaces is approached by developing a scheme for
rapidly rendering the apparent contour from a predicted pose (a step required for
tracking). This is done efficiently with a method for quickly tracing out the appar-
ent contours, combined with family of high speed polygon intersection algorithms
and a set of rules which determine visibility from the contour intersections.

Finally, a careful analysis of the properties of the trackers is performed. This is
used to design a non-trivial filter for combining the measurements, and it shown
that the design choices collectively lead to a very high performance tracker.

v

0. Contents

Declaration i

Acknowledgements iii

Abstract v

0 Contents 0

1 Introduction 12

1.1 Mathematical Tools . 15

1.2 3D geometry . 16

1.3 Projection and cameras . 18

1.4 Layout of thesis . 19

2 Feature based tracking 20

2.1 Introduction . 20

2.2 Previous work . 21

0

0. CONTENTS

2.2.1 Tracking . 21

2.2.2 Feature extraction and matching 23

2.3 Operation of the tracker . 26

2.4 Efficient feature matching . 28

2.5 Position optimisation . 32

2.5.1 Calculation of the match prior from SSD 37

2.6 Results . 39

2.6.1 Synthetic test of point tracking 39

2.6.2 Tests on images . 41

2.7 Conclusions . 42

3 Feature Detection 44

3.1 Previous work . 45

3.1.1 Corner detectors . 45

3.1.2 Comparison of feature detectors 52

3.2 The segment-test algorithm . 53

3.3 FAST: accelerating the segment test 56

3.3.1 Scoring and Filtering . 59

3.4 Even FASTer: a machine learning approach 60

3.4.1 Example detectors and features 62

3.5 Evaluation . 66

1

0. CONTENTS

3.5.1 Repeatability . 66

3.5.2 Performance . 72

3.6 Conclusions . 74

4 Edge Based Tracking 76

4.1 Introduction . 76

4.2 Previous work . 76

4.2.1 Modelling and tracking of curved surfaces 80

4.2.2 Implicit surfaces . 82

4.3 The edge based tracking system in detail 84

4.4 Rapid rendering of implicit surfaces 85

4.4.1 Calculating the apparent contour 85

4.4.2 Determining the visibility of the apparent contour 87

4.4.2.1 Intersections . 88

4.4.2.2 Cusps . 89

4.4.2.3 Propagating depth information between contours 89

4.4.3 Determining Surface Visibility 91

4.5 Rapid rendering of the visible apparent contour 91

4.5.1 Solving the differential equation 92

4.5.1.1 Fixed step size solver 92

4.5.1.2 Variable step size solver 93

2

0. CONTENTS

4.5.1.3 Termination strategies 96

4.5.2 Finding contours . 97

4.5.3 Fast contour search techniques 97

4.6 Tracking . 99

4.6.1 Results . 101

4.7 Conclusions . 101

5 Sensor fusion 104

5.1 Introduction . 104

5.2 Previous work . 104

5.3 Sensor analysis . 107

5.3.1 Point features . 108

5.3.2 Edge tracking . 110

5.4 Sensor fusion . 111

5.5 Results . 113

5.6 Conclusions . 114

6 Conclusions 118

6.1 Future work and open problems 120

Appendix A. Mean bounds SSD 122

Appendix B. Harris matrix and Cross Correlation 124

3

0. CONTENTS

Appendix C. Proof that ∇ · (H(x) (x− c)×∇f(x)) = 0 126

Appendix D. Lamp parameters 128

Bibliography 130

4

List of Figures

2.1 The steps of the point based tracking system. 27

2.2 An example of 2D k−D tree. 29

2.3 Timing results for building and indexing a k−D tree, against the
number of data points in the leaf node. 31

2.4 Three consecutive video frames are shown while the model rotated
rapidly (about 720 ◦/s) around its centre, showing how features
change their shape and appearance. 33

2.5 A synthetic example of feature matching between frames, where
the model has a single parameter. 33

2.6 Graph of probability of observing the data for the synthetic single
dimensional matching example. 34

2.7 Graph showing the probability of observing the data for the syn-
thetic example with different levels of blur. Also shown is the path
that EM takes through this space. 36

2.8 The feedback loop used to compute the matching prior based on
the SSD, and the matching posteriors from the EM optimiser. . . 38

2.9 Graphs showing the function which maps SSD to match probabil-
ity. The temporally smoothed function and raw data are given for
frame 200 in a sequence. 38

6

LIST OF FIGURES

2.10 The synthetic results demonstrate that having a good estimate
of P (mi ∈ MG) greatly improves the probability of a successful
convergence. The extra ‘kick’ downwards yields an improvement
of about 1%. 40

2.11 This shows the tracking system coping with large translations.
These consecutive frames are taken 1m apart, corresponding to
a speed of 50ms−1 (112mph). In this scene, only the vertical par-
titions are modelled. As a result, a large number of the visible
features (such as the contents of the desks) are structural clutter.
The outline of the modelled geometry is shown. 41

3.1 An illustration of the tradeoff between allowed image transforma-
tions and invariance of a feature detector. 45

3.2 Detail of 12 point segment test feature detection on an image patch. 54

3.3 Test patterns used for illustrating the feature detector. 55

3.4 The result of segment-test algorithm with r = 3 and n = 12 run
on the test patterns. 56

3.5 Approximately one third of the C-code generated for the 9 point
FAST detector, shown in 0.3 point text. 61

3.6 Ordering of tests for the learned 9 point and 12 point detector. . . 61

3.7 Segment test corner detection on a test pattern with non-maximal
suppression and r = 3. 62

3.8 Examples of detected corners where the angle is the maximum
detectable angle. 62

3.9 Segment test corner detection on a picture of King’s College, Cam-
bridge with non-maximal suppression and r = 3. 64

3.10 Segment test corner detection on the first picture of the Oxford
corridor sequence, with non-maximal suppression and r = 3. The
magnified cutout in E shows that the segment test algorithm re-
sponds quite strongly to sloped delta edges. 65

7

LIST OF FIGURES

3.11 Illustration of the system used to test repeatability of a feature
detector. 66

3.12 Box dataset: photographs taken of a test rig (consisting of pho-
tographs pasted to the inside of a cuboid) with strong changes of
perspective, changes in scale and large amounts of radial distortion.
This tests the corner detectors on planar textures. 68

3.13 Maze dataset: photographs taken of a prop used in an augmented
reality application. This set consists of textural features undergo-
ing projective warps as well as geometric features. There are also
significant changes of scale. 69

3.14 Bas-relief dataset: the model is a flat plane, but there are many ob-
jects with significant relief. This causes the appearance of features
to change in a non affine way from different viewpoints. 70

3.15 A comparison of the FAST detectors showing that n = 9 is the
most repeatable. 70

3.16 A comparison of the FAST to other detectors. 71

3.17 Graph of detection speed against number of corners for FAST 9. . 74

4.1 The steps of a RAPiD like tracker in operation. 78

4.2 Dove of Peace by Pablo Picasso. 81

4.3 The apparent contour and its generators for a spoked wheel. . . . 87

4.4 The contours of a torus occluding a sphere. 88

4.5 A cup and ball viewed from two different sides. The contours are
the same in both views, but the visibility is different. 90

4.6 Contours of the spoked wheel calculated with small and large step
sizes. 92

4.7 With a variable step sized solution, a non terminal point can pass
within one step of the initial point. 96

8

LIST OF FIGURES

4.8 Cusps are very clear in the rendered outline of the torus, but in
practice they are very hard to localise in the image. 101

4.9 The model of the lamp, and the lamp being tracked in various poses.102

5.1 An example of edge tracking failing when edges are misdetected. . 106

5.2 A 1D example of a Gaussian prior combining with a mixture model
likelihood to produce a multimodal posterior. 106

5.3 The errors between the point tracking posterior and the ground
truth are well modelled by uncorrelated statistics. To demonstrate
this, the two strongest correlations have been shown and even these
are only weakly correlated. 109

5.4 An example of edge based tracking failing when the initial position
is not sufficiently close to the correct position. 110

5.5 Block diagram showing data flow for the sensor fusion algorithm
over three frames. 111

5.6 Graph showing the angle of a hand-held camera undergoing vigor-
ous rotational shaking at approximately 6Hz. 114

5.7 Frames 250–269 from the vigorous shaking sequence. The frames
shown cover 0.4 seconds of the video. 115

5.8 Frames from the video sequence designed to test the sensor fusion.
Note the large number of strong unmodelled edges both on the
model and in the environment. 116

5.9 Three excerpts from an extended tracking sequence. 117

6.1 Block diagram of the complete tracking system. 119

9

List of Tables

2.1 Average number of MACs (multiply-accumulates) required for each
test during feature matching. 29

2.2 Comparison of k-D tree and mean bounded search. from 1546
fields from a video of a laboratory, with on average 479.1 features
per field. Timings were performed on an Opteron at 2.6GHz and
a Pentium III at 850MHz. Maximum allowed SSD =∞. 32

2.3 Results of limiting the maximum allowed SSD. See Table 2.2 for
details of the data used. 32

3.1 Timing results for a selection of feature detectors run on fields
(768 × 288) of a PAL video sequence in milliseconds, and as a
percentage of the processing budget per frame. Note that since
PAL and NTSC, DV and 30Hz VGA (common for web-cams) have
approximately the same pixel rate, the percentages are widely ap-
plicable. Approximately 500 features per field are detected. . . . 73

4.1 The Cash-Karp [16] parameters for the Runge-Kutta-Fehlberg al-
gorithm. 94

10

1. Introduction

Tracking is the act of following an object or objects, so that the pose (and some-
times shape as well) relative to some reference frame is known. The focus of
this thesis is tracking three dimensional rigid objects. The domain of this varies
from tracking small, manufactured objects, to tracking the pose of the camera by
tracking the inside of an immersive environment This is a 6-DOF (six degree of
freedom) problem: the position and the orientation (for instance roll, pitch and
yaw) both have three degrees of freedom.

Tracking is a useful technology and has many applications in robotics, augmented
reality and beyond. These applications often have hard real-time requirements
(i.e. a guaranteed upper bound on time taken by the process). Many applications,
however, can be redesigned so that this hard requirement can be replaced by a soft
real-time requirement in which typical processing speed is important and images
are processed on average slightly above video rate so that the time requirement is
met almost all the time. The techniques in this thesis are not real time but have
been designed for video-rate processing and as a result they have been designed
with computational efficiency in mind.

Many tracking technologies have been developed, such as as GPS (usually low
data rate, works best in outdoor environments), ‘Polhemous’, ‘Flock-of-Birds’ and
‘Hi-Ball’ (provide high data rate and accuracy, but are expensive, and tracking
can only work in instrumented environments). Visual tracking has several ad-
vantages as cameras are cheap, lightweight and ubiquitous. Techniques for visual
tracking of fiducial markers have been developed, one of the most popular being
ARToolKit [65]. However, this thesis is about markerless tracking. Markerless
tracking does not require instrumentation of the environment, which can be a
time consuming process, if it is possible at all: it may be impossible in outdoor
environments, or where the environment might not be cooperative (such as in
surveillance applications).

12

The focus of this thesis is high performance tracking, that is tracking which is both
robust and computationally efficient. Achieving both robustness and efficiency is
a difficult problem, and in fact, of the many trackers which have been presented,
one common theme which can be extracted is the tradeoff between efficiency and
robustness. This tradeoff will be described below, moving from brittle (but fast)
to robust (but slow) tracking systems. Essentially, when tracking an object, the
object’s real position deviates from the predicted position, and that implies the
following question:

How far am I going to look?

With increasing distance come a variety of problems. Larger search distances
require that more of the image is being searched, requiring more computational
time. When a larger proportion of the image is being searched, the system is more
likely to get an incorrect measurement. Dealing with outlying measurements is
difficult and furthermore, some techniques simply do not scale beyond certain
distances: too many measurements will be incorrect for any system to cope with.
In these cases a different (and usually much more complex) technique must be
used instead (as described below and in Section 4.2).

There are several examples of the tradeoff in the 6-DOF tracking literature. The
field can be split up into edge-based tracking (see Section 4.2 for a detailed
overview), where tracking relies on strong gradients well localised in one dimen-
sion, and point-based tracking (see Section 2.2.1), where tracking relies on point-
like features which are well localised in two dimensions.

Consider one of the early proposed frame-rate 6-DOF tracking systems, the
RAPiD [51] tracking system. The tracking system uses a model to predict where
edges should be in the image and a small area around each of the the predicted po-
sitions are searched. After searching, the model pose is altered to align predicted
edges with the edges found. This tracking system requires very little computa-
tion, due to the tiny area of the image which is analysed. Since edges are only
localisable in one dimension, only a one dimensional search is required to look for
them.

The previous method is only applicable when the distance moved is small, but
as the object moves further, and the search distance increases, the probability of
finding the wrong edge (for instance due to clutter in the search region) increases
greatly. In, [35] the computational resources are spent on longer search distances,
and then a robust optimiser which greatly reduces the effect of mis-measured

13

1. INTRODUCTION

edges. Extra computation is spent in [95] where the robust optimiser is preceded
by a robust optimise on a reduced dimension model, in a coarse-to-fine strategy.

The system presented in [3] instead opts to spend the available computational
time on getting better measurements of edges by extracting the edges using a
robust optimiser and then fitting the model to the robust edges. [67] improves
the search distance further by extracting all nearby edges and assigning each one
a probability, before fitting the model to these edges with a robust optimiser.
The multi-modal representation of edges makes the system more robust because
it allows the correct edge to be present even if there is a dominant incorrect edge,
but requires more computational resources.

Even with these techniques, once the distance exceeds a certain size, the assump-
tion that edges in the image will appear near model edges fails. Attempting to
use this assumption results in a very large number of bad measurements. One
solution is to switch to a whole image approach, in which the entire image (as
opposed to small areas near to predicted edges are searched). In [86], edge seg-
ments are extracted for the whole image (a process which at the time required
specialised hardware for reasonable performance) and the model is fitted to these
using a guided search in which model edges are aligned with extracted edge seg-
ments. Whereas [68] extracts edgels (as opposed to segments) and finds parts
of the model which can be aligned more or less independently, a process requir-
ing considerable computation. This improves robustness a great deal since the
alignments operate in less than 6-DOF, so much more thorough searches can be
performed.

One primary problem with edge based systems is that under common assumptions
about what constitutes an edge, all edges look alike. Others have instead opted
for point based tracking, since these features tend to be much easier to correspond
(see Section 2.2.2 and 4.2). A good example of this is given in [145]. However,
point-like features tend to require considerable computation: they require a two
dimensional search to localise in an image, and a further two dimensional search
to correspond features between frames. Further robustness can be achieved by
expending enough computational resources to examine the entire image for fea-
ture points and allowing matching across arbitrary distances (see Section 2). This
still requires that at least some part of the object is visible in consecutive frames.

Therefore, an alternative approach is to allow the object to move even further,
and this is done by extracting feature points and matching them in to a database,
without a strong prior on position. Once the prior contains no information, this
technique becomes initialisation every frame. This comes at significant compu-

14

1.1 Mathematical Tools

tational cost. When the database becomes large, matching is not only slow but
effort must be expended in extracting features which are distinctive enough the be
reasonably unique. The other computational cost arises from the need to match
points across large changes in camera position. This requires considerable com-
putational resources to extract features which are not only distinctive but also
reasonable invariant to affine changes. Aside from the computational cost, large
databases of points are not without their problems as will be discussed in Sec-
tion 2.2.1. A good example of this type of system is presented in [44], though it
still requires more computational resources to run at video-rate than is available
in a commodity processor.

The final example to be given for trading computational cost for robustness is
that of combining multiple tracking systems, for example [146], and [137]. These
systems expend the computational effort in running multiple, more or less in-
dependent tracking systems. These then combine the results of the tracking
systems, so if one tracker is under constrained (for instance there are too few
features of the correct type), the other part will hopefully provide enough infor-
mation to constrain the whole system properly. In the case of [46], a robust but
approximate tracker is used to initialise a brittle but accurate tracker.

In this thesis, to achieve both robustness and performance, multiple tracking
systems are used to combine the strengths and relieve most of the weaknesses.
Because the tracking systems are to be combined, they no longer need to be built
as general purpose system that have to work in as wide a variety of situations as
possible. Instead, the tracking systems can each be designed to perform one task
as well as possible without regard to some of the failure modes, relying instead
on other trackers to make corrections if necessary.

The tracking systems to be combined are model-based in that they require a
model of the object being tracked. In particular, a 3D surface model is required.
These models are built by physically measuring the object to be tracked and
building the model from these measurements ‘by hand’.

1.1 Mathematical Tools

The linear algebra operations, including the ones described in this chapter, are
provided by the C++ TooN software library [33]. Various matrix decompositions
are provided by the BLAS [11] and LAPACK [2] libraries.

15

1. INTRODUCTION

The camera modelling is provided as part of the CVD [120] computer vision
library. Camera calibration was performed using the method described in [35],
using a model with depths ranging from about 10cm to 5m, with the closest part
of the model occupying the entire field of view. This is required for both the focal
length and radial distortion parameters to be set accurately. A quintic camera
model has been used throughout and is described in Section 1.3.

More information on 3D and projective geometry can be found in [53].

1.2 3D geometry

This chapter presents the framework and notation used throughout the rest of
this thesis. 3D coordinates are written as homogeneous vectors, such that a point
p at (x, y, z) is written as:

p =

γx
γy
γz
γ

 , (1.1)

where γ is a degree of freedom which does not affect position. If p is in frame A,
it is written as (where γ is arbitrarily set to 1):

pA =

xA

yA

zA

1

 . (1.2)

Transforming p from A to B is achieved by multiplication with a 4× 4 transfor-
mation matrix:

pB = EBApA, (1.3)

where E represents a Euclidean transformation and has the general form:

E =

R t

0 0 0 1

 , (1.4)

where R is a 3× 3 rotation matrix (a special orthogonal matrix) and t is a trans-
lation vector in R3. E, therefore has six degrees of freedom. There are various

16

1.2 3D geometry

ways of parameterising E (such as using Euler angles or unit quaternions [40]
for parameterising R), but in this case, E is parametrised using the exponential
map:

E(µ) = e
P6

i=1 Giµi , (1.5)

where G1 . . .G6, the generator matrices, are given by:

G1 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

G4 =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , G5 =

0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , G6 =

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 .

(1.6)

This is the SE(3) Lie group, further information about which can be found in
[147]. Although this formulation has singularities, they occur far away from
µ = 0. In this thesis, this framework is used to parameterise a small motion, M,
which occurs between a pair of frames, so the singularity can be easily avoided.
If there is a point pO in the frame of the object, computing the motion of the
point in the camera frame, C, as the transformation varies by a small motion can
be achieved in a straightforward manner by linearising:

∂pC

∂µ

∣∣∣∣
µ=0

=
∂

∂µ
M(µ)ECOpO

∣∣∣∣
µ=0

=
∂M

∂µ

∣∣∣∣
µ=0

ECOpO, (1.7)

and
∂M

∂µi

∣∣∣∣
µ=0

= Gi. (1.8)

This formulation, (premultiplying the translation by the small motion M and
linearising) makes the assumption that the camera is making small motions.
Postmultiplying E by M would instead make the assumption that the object
is making small motions. Making the correct assumption is important for numer-
ical stability: consider the case where a camera makes a small rotation. This is
equivalent to the model making a small rotation but a very large translation (if
the camera and model centres are far apart). If the motion is computed by an
optimizer then the optimizer will have to deal with a large spread in the com-
puted parameters. In optimization schemes such as Gauss-Newton (the scheme
predominantly used in this thesis), this results in the system inverting a matrix
with a large spread in eigenvalues, which is ill-conditioned.

17

1. INTRODUCTION

1.3 Projection and cameras

A 3D point is projected by an idealised camera—a pinhole camera centred at the
origin and with unity focal length—to a point (u, v):

su
sv
s

 =

1 0 0 0
0 1 0 0
0 0 1 0

x
y
z
1

 . (1.9)

The derivatives of the projected point positions u and v with respect to µ can be
computed via the quotient rule:

Jp =

∂

2

4

u
v

3

5

∂µ
, where

∂u

∂µi

=
z ∂x

∂µi
− x∂z

∂µi

z2
, etc. . . (1.10)

This computes the derivatives of a point in an ideal camera with respect to a
motion. However, real cameras are not ideal. Often, they are modelled as linear
where the pixel coordinates [u′, v′] are given by:

[
u′

v′

]
=

[
fu 0 u0

0 fv v0

]

u
v
1

 . (1.11)

However, this model is unsuitable for cameras with large amounts of radial dis-
tortion, such cameras with wide angle lenses. These are more suitably modelled
by:

[
u′

v′

]
=

[
fu 0 u0

0 fv v0

]

γu
γv
1

 , (1.12)

where

γ = 1 + αr2 + βr4, (1.13)

and

r =
√

u2 + v2. (1.14)

The Jacobian, J, of the pixel coordinates, the derivatives of the pixel coordinates
with respect to the motion of the 3D point, are computed by application of the
chain rule:

J = Jc|[u,v] Jp, (1.15)

18

1.4 Layout of thesis

where Jc is the camera Jacobian:

Jc =

∂

[
u′

v′

]

∂[u, v]
=

∂u′

∂u

∂u′

∂v

∂v′

∂u

∂v′

∂v

 . (1.16)

The full nonlinear projection of a point (x, y, z) in C is denoted by the function
P : [

u′

v′

]
= P ([x, y, z, 1]T). (1.17)

1.4 Layout of thesis

Chapter 2 presents a new feature based tracker which aims to be as robust and
scalable as possible while keeping reasonable computational requirements. To
achieve this, the system sacrifices the ability to make drift free measurements. To
fully realise this system, a new feature detector (designed to be as computationally
efficient as possible) is required and this is developed in Chapter 3. Dealing with
arbitrary smooth curved surfaces is not trivial and is even harder to do at frame
rate. In Chapter 4 a new edge based tracking system is described which is able to
track at frame-rate, but it is developed with regard to computational efficiency as
opposed to robustness. Chapter 5 presents a statistical analysis of the different
tracking systems and develops a method whereby they can be combined resulting
in an extremely robust overall tracking system which is still able to operate at
video rate on standard hardware. Each section has a more detailed literature
survey relevant to the material being presented.

19

2. Feature based tracking

2.1 Introduction

Despite advances that have been made in the domain of frame-rate visual track-
ing, there is still a need for systems which can tolerate the very rapid translations,
rotations and accelerations which can occur in certain situations, such as uncon-
strained hand held or head mounted cameras. Even with a good motion model,
these kinds of motions can lead to large prediction errors, so a system is needed
which can deal with this. This kind of problem suggests the use of a point fea-
ture based tracking system: point features are relatively easy to localise and
correspond between frames.

Typically, point feature based tracking works as follows. A 3D model is present
in the form of a 3D point cloud with each of the 3D points annotated with ap-
pearance information. Correspondences between the 3D points and the 2D image
are found. A position prior may be used to reduce the amount of searching that
this requires. The model position is then adjusted to minimise the reprojection
error between the 3D points and their 2D correspondences.

There are several different kinds of point based tracking system and these different
systems have different properties in terms of robustness, drift, scalability, CPU
usage and longevity of the model. It is the opinion of the author that a detection
and matching based tracking system which does not maintain a static 3D point
cloud is the best compromise (as discussed in Section 2.2.1). Because the point
cloud is not static, drift in this kind of system is high and must be corrected by
other means (see Section 5.4). The purpose of the tracker presented in this chapter
is to provide the differential (i.e. subject to drift) measurements as robustly as
possible.

20

2.2 Previous work

2.2 Previous work

2.2.1 Tracking

Point feature based tracking systems broadly fall into one of two categories: set-

to-region, where each member of a set of features known in frame n is matched
against a region in frame n+1, e.g. by using NCC (Normalised Cross Correlation),
and set-to-set matching, where a set of features detected in frame n is matched
against a set of features in a database (which may be the features detected in
frame n + 1).

The Lucas-Kanade[6, 91] template tracking algorithm works by having a template
(a patch of an image) and a model for distorting the patch. The parameters of
the distortion (often translation and rotation but can also include complex warps
such as projective warps and even appearance models) are adjusted to minimise
the sum squared error between the distorted image patch and the image. Since
this warp is arbitrary, it can be used to track patches and 3D pose [10, 15, 48, 62,
63, 97]. These tracking algorithms can be used in a set-to-region system by first
extracting points and then tracking them in 2D across the image in subsequent
frames.

A recent example (using NCC) of set-to-region matching is presented in [27], for a
point feature based SLAM (Simultaneous Localisation and Mapping) system. A
feature detector is infrequently run on the image to acquire new features and fea-
tures are extracted as a small image patch. The system maintains full covariance
for the feature position in 3D, and projects this into the image as a covariance
ellipse. The position of the feature in this image is found by NCC between the
extracted patch and the image over the area of the ellipse.

Set-to-region matching has both advantages and disadvantages compared to set-
to-set matching. One of the advantages of set-to-region matching is that tracking
of features can continue after the feature detector ceases to detect the feature
in the correct place. Further, the localisation can be very accurate. However,
there are downsides. The changing appearance of features (for instance due to
aspect changes) can cause tracking failure—though the methods proposed in [97,
106] alleviate this to a large extent. The main problem is that the area of the
search region, and hence the computational cost, increase very rapidly with the
prediction error. This places limits on robustness which are too severe, and
consequently, the choice has been to use a set-to-set tracking system.

21

2. FEATURE BASED TRACKING

As stated previously, the feature based tracking system requires a 3D point cloud
of the object being tracked. Acquiring the point cloud, however is non trivial.
There are several techniques. In [44], multiple views of the object are required a
priori and an off-line structure-from-motion algorithm (see [53] for more details
on this process) is used to create a fairly dense point cloud. Detected points are
matched into the point cloud using the SIFT [88] algorithm, and the position is
computed from the correspondences.

Currently, for modest size models the system requires several times the current
available CPU speed to operate at frame rate. It is also not clear how well the
system would scale to very large models, without using a tracking assumption
to reduce the size of the database being matched into. Finally, structure from
motion is also not without its problems: the further the camera moves from the
starting point, the further the estimated pose will drift from the correct value.
However, since the image is matched into the database in every frame, tracking
can be regained after it is lost.

A prebuilt 3D surface model of the object being tracked is used by [145]. Several
views of the model are taken from a known position, and these are denoted key-
frames. The model starts from a known position and points are projected onto
the model. Correspondences between frames are used to find the 2D motion of
the points. The change in position and the original pose are jointly optimised,
which helps to reduce the effect of alignment errors. The new pose is used to
predict the position and warping of points from the closest key-frame. The pose
is then updated using the key-frame. This allows the system to avoid problems
associated with either a large database (since only one key-frame is used at a
time) or wide baseline matching. The 3D point cloud represents the appearance
of the model. Using key-frames keeps a static record of appearance. Without the
key-frames, the system will drift. This is equivalent to appearance drift in the
template tracking literature (see [97]).

When entered, the key-frames must be manually aligned. This is a tedious pro-
cess and a very large number of key-frames are required to get coverage of a
large model. A solution to this problem is proposed in [144] whereby key-frames
are placed automatically. If too few key-frame features are visible, then a new
key-frame is added at the position of the previous frame. Because there is no
manual alignment, the position will drift as errors accumulate in the positions of
successive key-frames. Systems which build models without absolute positioning
(in this case, the 3D point cloud is being built) will always suffer from drift. The
automatic placing of key-frames reduces the drift greatly compared to the equiv-
alent system without key-frames, but cannot remove it in the general case. In

22

2.2 Previous work

some cases, however, such as cyclic motion, the drift may be bounded.

There is a further problem with static point clouds: often (for instance in large,
indoor environments such as offices), there are large number of useful features
present due to clutter, such at items placed on a desk. The features are good for
short term tracking, but they may not be persistent over long timescales as the
clutter will change. Consequently, the point cloud will become out of date and
tracking performance will suffer.

2.2.2 Feature extraction and matching

This section is about feature extraction and matching; feature detection is a large
topic and is dealt with in Section 3.

One of the earliest developed techniques was to extract patches of the image
around the detected feature, and to use these patches as the descriptor or fea-

ture vector. For matching purposes, the L1-norm, L2-norm or NCC (Normalised
Cross Correlation) can be used to measure the difference between patches [91].
Using NCC gives affine invariance to lighting, and is equivalent to using the L2

norm after removing the mean and setting the standard deviation of the feature
vector to unity. To get further invariance, a detector can be used to determine
the canonical rotation. The patch can be extracted at this rotation, and then
the descriptor becomes automatically rotation invariant. As well as rotation,
canonical scale [88] can be found to give scale invariance, and even the canonical
pose in affine image space [102] can be found. Once the canonical pose is known,
the local patch can be rectified and the descriptor can be extracted as an image
patch.

Other proposed descriptors give different amounts of invariance to translation,
rotation and other forms of distortion. These descriptors can be used with simple
extraction to give some invariance to these distortions, or they can be used to
reduce errors in the localisation of the features.

One approach is to process image patches with a filter bank. In this case, the
feature vector is the response of each filter in the bank at the feature position.
Kœnderink proposed the ‘local jet’ [77] of order N which consists of all deriva-
tives of a Gaussian kernel up to order N . In [125] rotation invariance is achieved
by multiplying together elements of the local jet (up to order 3 in this case)
in various ways to create a feature vector, each element of which is rotation-

23

2. FEATURE BASED TRACKING

ally invariant. Examples are the local average intensity, gradient magnitude and
Laplacian. Scale invariance is achieved by computing the feature at scales set
apart by a factor of 1.2.

Steerable filters [37] allow non-isotropic filters at arbitrary orientations to be
synthesised from a small number of such filters at fixed orientations. Complex
filters [124] are defined over the unit disc by the equation

Cmn(x, y) = (x + iy)m(x− iy)nG(x, y) , (2.1)

where G is a Gaussian. The descriptor proposed in [43] uses invariants computed
from moments of various orders and degree:

Mpqa =
∑

x

∑

y

xpyqI(x, y)a , (2.2)

(where p+q is the order and a is the degree), of the image patch. These invariants
were originally used on colour images.

Recently, there has been a considerable amount of interest in descriptors which
build histograms of some property of an image patch. In the SIFT (Scale Invari-
ant Feature Transform) algorithm, image patches are extracted at a canonical
scale and gradients of the patch are computed. A gradient histogram is used to
determine the overall orientation of the feature and the patch is rotated. Features
with poor orientation localisation can be rejected, or if there are several strong
peaks in the orientation histogram, then multiple descriptors can be made. The
image patch is then split up into a 4×4 grid, and orientation histograms contain-
ing 8 bins are made in each of the grid cells, resulting in a 128 element feature
descriptor. It is noted in [66] that a 128 element feature vector is probably larger
than necessary. So, to reduce the size, a simplified SIFT like descriptor (the raw
gradients in a 41 × 41 patch after the orientation has been determined) is used,
features are extracted from a very large number of images of very different scenes
and then PCA (Principal Component Analysis) [112] is performed on all the ex-
tracted vectors. The top 20 basis vectors are taken, and the components in these
are used as the descriptor. A newer extension is GLOH [103] (Gradient Location
Orientation Histogram), which is a 272 element SIFT like descriptor computed
on a log-polar grid, with the dimensionality reduced to 128 using PCA.

The shape context [8, 9] algorithm performs edge detection on the area around
the point, and computes vectors from the point to all edgels. The vectors are
binned in a log polar histogram.

24

2.2 Previous work

An intensity spin image [59, 60] is a two dimensional histogram, one dimension
being distance from the centre, and the other being pixel intensity. This is rota-
tionally invariant and is extended to give affine invariance in [80].

A comparison of many of these histogram based descriptors discussed in the
previous paragraphs has been undertaken in [103]. The SIFT[88] based algorithms
performed best.

Various techniques have been proposed to improve the quality of matching. In
[152] features are matched from frame n to frame n + 1. Correspondences are
only kept if they are the same when matching from frame n + 1 back to frame n.
An alternative method proposed in [88] operates on a database of features. If a
pair of features in the database is too close, then they could easily be ambiguous,
so they are removed.

The difference (or distance) between descriptors are often measured using metric
norms (typically L2), and the best match is the one with the smallest distance.
The Malahanobis distance is often used, but the vectors can be transformed such
that the distance is the L2-norm.

Finding the best match can be time consuming; matching features between frames
is in the näıve case O(N 2) in the number of features per frame. A common method
for speeding up the matching problem is to use a k−D tree [38]. A k−D tree
in Rk recursively splits up the space with k − 1 dimensional axis-aligned hyper-
planes. All points end up in bins at the leaves of the tree. A depth first search
with branch and bound is performed to find the closest point. If the data is quite
sparse, i.e. N � 2k, or there is not a good match in the database, then the k−D
tree can end up searching a large amount of the database.

To further improve efficiency, the nearest neighbour search can be approximated
by limiting the number of bins searched. The BBF [7] (Best Bin First) and
priority k−D tree [4] improve matters by searching the closest bin first. See [5]
and references therein for more information on approximate nearest-neighbour
searching.

By making use of a 3D model used in a tracking system, [83] turns the problem
of extraction and matching into a classification problem. Features are detected
and image patches are extracted and projected back onto the 3D model. A
large number of views are generated for each feature (called a view-set). The
dimensionality of the image patches is reduced via PCA, and the view sets for
each feature are clustered using k-means. Matching is then performed with a

25

2. FEATURE BASED TRACKING

nearest neighbour classifier. The system is efficient, but still too slow to operate
at frame rate. The speed of the system is improved upon in [82] in which the
feature vector consists of differences between all pairs of pixels in the image patch,
quantised down to one ternary digit (0, −1 or 1). Random trees [1] asking ternary
questions which examine only a small subset of this vector for all the features are
built. At run time, the trees are used as weak classifiers of the features, the end
result being a combination of all of the outputs. The resulting system is both
accurate and very computationally efficient. Because only a small portion of the
feature vector is examined, it does not need to be computed in its entirety.

As stated in [46], there is a tradeoff between invariance and discrimination of
features. The more invariant features are to various transforms, the less ability
they have to discriminate. As a result, the invariance of the feature descriptors
should be matched to the transformations that the feature is expected to undergo.
If there is too little invariance then the system will be unable to generate correct
matches, since none of the features will ‘look’ the same. If there is too much
invariance, then the matching quality will suffer, since different features may
look like one another if extra parameters are allowed to vary.

2.3 Operation of the tracker

The basic operation of the point based tracker is shown in Figure 2.1. The tracker
tracks a 3D point cloud, which is obtained by projecting detected features onto a
3D surface model. The 3D point cloud is very short term, it is only used between
pairs of frames. Consider steps (D) and (E); features detected in (D) will be in
slightly different places on the object than in (A) due to quantisation and image
noise. Therefore, in (E), there will be residual errors and a corresponding error
in the final pose. As a result, going round the loop again, in (B), the model
will be in a slightly incorrect position, so the geometry of the point cloud will be
slightly incorrect. This will lead to a larger pose error in step (E). As the tracker
continues round the loop, these errors accumulate and the tracker diverges from
the correct pose. In Section 2.2.1, various ways of reducing the drift of point
based trackers are discussed, but none of these will be used due to the problems
discussed in Section 2.2.1. Instead, independent measurements will be removed
to eliminate the drift.

26

2.3 Operation of the tracker

D

A

E

B C

Figure 2.1: The point based tracking system. (A) Features are detected in frame
n (red), and (B) are projected onto a 3D model to create a 3D point cloud.
(C) Features are detected in frame n + 1 (yellow) and feature correspondences
are established between detected features and the point cloud. (D) The point
cloud from frame n is shown superimposed on frame n + 1. (E) The position is
optimised to minimise the 2D distance between points in the 3D point cloud and
the corresponding points in frame n + 1.

27

point-tracking/figs/point_tracking/tracker.eps

2. FEATURE BASED TRACKING

2.4 Efficient feature matching

Features are detected in frames n and n + 1, and feature vectors are extracted
for each of the detected feature points. Detection is performed using the FAST
feature detector, which is described in Section 3. The feature vector consists
of the intensities of the 16 pixels in a Bresenham circle of radius 3 around the
feature location, which are the pixels examined by the feature detector. The pixel
intensities are not normalised.

For every feature in frame n, the feature in frame n + 1 is chosen which min-
imises the SSD (sum squared difference) between the feature vectors. This allows
multiple features in frame n to match to a single feature in frame n + 1. This is
in essence the simplest feature matching scheme. Although there are more ad-
vanced schemes, they all come at the cost of increased CPU usage. Furthermore
the more advanced techniques increase the invariance of the descriptors, which is
not necessarily advantageous. A common technique is to use NCC (Normalised
Cross Correlation) for matching if image patches are used as the descriptor. This
is equivalent to using the SSD if the mean is removed and the standard deviation
is set to unity—which results in a descriptor which is invariant to affine changes
in lighting. However, this is for a tracking system in which the features have no
persistence in time—they are only ever used for inter-frame matching. Conse-
quently, most of the features will experience small lighting changes. Adding full
affine invariance to lighting makes feature matching worse since it reduces the
ability of the descriptor to discriminate between features.

During the computation of the SSD between two features, the current value of
the SSD is compared to the lowest SSD computed so far. If the current SSD
exceeds the lowest SSD, then the features do not match and the computation can
be terminated early In order to make more use of this, a rotation can be applied
to the feature vector which compacts the energy into the first few terms. This is a
technique common in image compression, especially JPEG [57] compression. For
each frame, a rotation could be found which performs an optimal compaction,
but this is computationally expensive. A rotation which is optimal for an entire
dataset could be found, but it can still only be performed using an O(N 2) ma-
trix multiplication, whereas specific rotations can be performed faster. The DCT
(Discrete Cosine Transform) can be performed using an O(N log N)transform,
and the HWT (Haar Wavelet Transform) can be performed using a particularly
efficient O(N) transform. Furthermore, the simplicity of the fast Haar trans-
form means that very few multiplications (16) are required. Table 2.1 gives a
comparison of the different methods.

28

2.4 Efficient feature matching

Compaction type None Optimal DCT Haar
Number of MACs per test 4.61 3.24 3.52 3.69

Table 2.1: Average number of MACs (multiply-accumulates) required for each
test during feature matching.

Figure 2.2: An example of a 2D k−D tree, shown for the first two components of
HWT transformed image patches. Thicker lines are closer to the root of the tree.

If the matching method described is implemented in the simplest way possible,
then the computational cost is O(N 2) in the number of features per frame. This
cost is avoided by using a method analogous to a 1D k-D tree, which is given in
Algorithm 1. In essence, the features in frame n+1 are sorted by the mean of the
feature vectors. The feature with the closest mean to the feature being matched
is found by binary search. The search for the best SSD starts from this point (a
proof of this is given in Appendix A). This algorithm works because the SSD
between the mean values of a pair of vectors provides a lower bound on the SSD
between the vectors. Since the features are sorted, the search can be terminated
on this bound. One of the primary benefits of this algorithm over the k-D tree
is that very efficient, highly quality sorting (such as introsort [108]) and binary
search algorithms exist in the C++ STL (Standard Template Library). Due
to their widespread use, a large amount of time has gone into optimising these
algorithms Furthermore, the inner loop of the algorithm is small and simple to
implement.

29

point-tracking/figs/kd-tree/median.eps

2. FEATURE BASED TRACKING

Algorithm 1 Mean-bounded search for feature matching

BoundedSearch(Feature vector f , Database of feature vectors, D, MaxSSD)
find argmin

i

‖f − di‖22

Sort D by the mean of the feature descriptors

i = argmin
i

|f − di| Use binary search, to make this O(log N)

Search outwards from di until the difference in means bounds the search

BestSSD←MaxSSD
BestFeature←−1
k←0

M is the number of elements in the feature vector.

while(M(f − di+k)
2 < BestSSD OR M(f − di−k−1)

2 < BestSSD)
The entire SSD need not be computed if the SSD exceeds BestSSD before

the computation is complete
if(‖f − di+k‖22 < BestSSD)

BestSSD←‖f − di+k‖22
BestFeature←i+k

if(‖f − di−k−1‖22 < BestSSD)
BestSSD←‖f − di−k−1‖22
BestFeature←i− k− 1

k←k+1

end

return BestFeature

To test the algorithm, the mean-bounded search needs to be compared to the
näıve algorithm and a k−D tree. The k−D tree operates by splitting the di-
mension with the largest standard deviation with a hyper-plane positioned at the
median of the points in that dimension. An example of a k−D tree is shown in
Figure 2.2. The k−D tree is built such that there are M points in the leaf nodes,
and due to the its small constant, the näıve comparison method is used within
the leaf nodes. As M gets large, the poor algorithmic performance of the näıve
method dominates, and as M gets small, the large constant factors of the k−D
tree dominate. The tradeoff is shown in Figure 2.3. However, the time required
to build the tree decreases with M . Table 2.2 shows the timing results. The

30

2.4 Efficient feature matching

0 20 40 60 80 100 120
5

10

15

20

25

30

35

40

Data points in leaf node

T
im

e
/ m

s

Build
Lookup
Total

Figure 2.3: Timing results for building and indexing a k−D tree, against the
number of data points in the leaf node. See Table 2.2 for details of the data used.

optimum for matching and overall timing has been shown.

The results in Table 2.2 show that the building time of the tree dominates the
overall value of the time, and although the k−D tree is superior to other methods
when matching is considered, the mean-bounded search performs best overall. As
can be seen, the näıve algorithm is unsuitable for the task.

There is an obvious ‘optimisation’ for the mean-bounded search. Since both lists
of features are sorted, the index in one list can be used as an approximation
of the position in the second list, thereby eliminating the need for the binary
search. It turns out, though that this ‘scanning mean-bounded search’ is not an
optimisation.

The algorithm as given gives a significant speed increase relative to the k−D tree,
but there are a few details which increase the speed considerably. The algorithm
allows for a maximum permitted SSD, above which no match is considered to
have been made. This is in essence an arbitrary ‘magic number’ (especially con-
sidering Section 2.5.1), however its presence speeds up the algorithm. If a feature
disappears between frames n and n + 1, then it will not in general look like any
feature present in frame n + 1, so the best SSD will be large. As a result, the

31

point-tracking/figs/timing_results/kd-graph.eps

2. FEATURE BASED TRACKING

Algorithm Näıve k−D tree (min k−D tree Mean-bounded Scanning mean-
matching time) (min time) search bounded search

comparisons 222700 17210 27570 42980 44170
Setup time (ms) 0 (0) 2.64 (18.17) 1.78 (13.41) 0.16 (1.24) 0.16 (1.24)
Matching (ms) 20.04 (130.46) 1.69 (11.11) 2.05 (12.89) 3.47 (22.00) 3.52 (22.30)
Overall (ms) 20.04 (130.46) 4.33 (29.28) 3.83 (26.30) 3.63 (23.24) 3.68 (23.54)

Table 2.2: Comparison of k-D tree and mean bounded search. The results are
taken from 1546 fields from a video of a laboratory, with on average 479.1 features
per field. Timings were performed on an Opteron at 2.6GHz and (bracketed) a
Pentium III at 850MHz. Maximum allowed SSD =∞.

Algorithm k-D tree: Mean-bounded Maximum SSD
min time search

Matching time (ms) 2.05 (13.41) 3.47 (22.00) ∞
Overall time (ms) 3.83 (26.30) 3.63 (23.24)
Matching time (ms) 2.05 (13.36) 3.01 (17.93) 5000
Overall time (ms) 3.83 (26.15) 3.17 (19.17)

Table 2.3: Results of limiting the maximum allowed SSD. See Table 2.2 for details
of the data used.

mean-bounding will not be able to terminate the search rapidly, and the feature
will have to be tested against all (or nearly all) others. In practice, this has a
significant effect on the speed of the algorithm, as is shown in Table 2.3.

The matching time dominates the mean-bounded search. In future, this could
be improved (at no additional computational cost) by using the SSE3 vectorising
instruction set, which provides a four way multiply and a horizontal add and
would require no additional logic. The (on average) 3.69 multiply-accumulates
could be replaced with a single one, leading to a large speed increase.

2.5 Position optimisation

Under large frame-to-frame motions, such as the one shown in Figure 2.4, feature
points can change appearance significantly and this typically leads to a large
number of mismatched features. In some sequences, consecutive frames have as
few as 10% of points matched correctly. Even using SIFT [88] and a similar
matching percentage was obtained.

32

2.5 Position optimisation

Frame 752 Frame 753 Frame 754

A
B

Figure 2.4: Three consecutive video frames are shown while the model is rotated
rapidly (about 720 ◦/s) around its centre. The outline indicates the position of
the model in the previous frame. Features on face A change their appearance and
features on face B change shape significantly.

Image 1 Image 2

Model Points

Image points

Matches

Figure 2.5: A synthetic example of feature matching between frames, where the
model has a single parameter. Only a small fraction of the data is shown.

In classical Bayesian fashion, the most likely model parameters are computed by
maximising the probability of the observed data given the parameters (with a
weak prior). In frame n, we have two sets of features: one set of features on the
model, FO,n (extracted in the previous frame, and reprojected under a motion µ),
and another set, FI,n, which have been extracted from the image. Between these
features, we have a set of matches M = {m1, ...,mN}, where a match is given by
mi = {fO,i, fI,i}, where fO,i ∈ FO,n and fI,i ∈ FI,n.

The set of matches can be regarded as being made up of correct (good) matches,
MG, and incorrect (bad) matches, MB.

If mi ∈MG, then fI,i is in the same place that fO,i projects to under the motion
to be recovered, with some added measurement noise. If mi ∈ MB then fI,i

can appear anywhere in the image, with approximately uniform probability. If
ei is the Euclidean distance between fO,i and fI,i in the image, then the PDF

33

point-tracking/figs/fast_motion/fast.eps
point-tracking/figs/1dexample/matching-figure.eps

2. FEATURE BASED TRACKING

−30 −24 −18 −12 −6 0 6 6 12 18 24 30
−10

−8

−6

−4

−2

µ

lo
g

(p
ro

ba
bi

lit
y

de
ns

ity
)

data|µ,σ
data|µ,σ=σ

em

Figure 2.6: Probability density of observing M for the one dimensional example.
PDFs are shown for the known value of σ, σg and where EM converges, σem, at
the known value of α. The correct value of µ is 6.

(Probability Density Function) of observing the matches is given by:

p(M |µ) =
N∏

i=1

(1− α)

A
+ α

e(−
e
T
i ei

2σ2)

2πσ2
, (2.3)

where A is the image area, α is the expected proportion of good matches and σ
is the measurement noise.

In theory, one method for finding the most likely µ is to use iterative reweighted
least squares (IRWLS) where the reweighting function is the posterior probability
that a match is an inlier. In practice, with a large number of mismatches, IRWLS
will often not succeed because of local maxima in the likelihood. This will be
demonstrated with an example with a one-dimensional model. Points are placed
randomly on the unit circle, giving FO. The model is then rotated by µ radians,
which is the parameter to be determined. To simulate matching, the new positions
of the points are either corrupted by Gaussian noise with variance σ2, or scattered
about the unit square (Figure 2.5), giving FI .

The likelihood of the data given µ and the correct value of σg is shown in Fig-
ure 2.6 and visibly contains many local maxima with the absolute maximum
being a narrow peak. Hence, in order to find the maximum, it is necessary to
use a technique which is robust to local maxima. Generalised Monte-Carlo based
techniques such as simulated annealing [70] can escape local optima by randomly
perturbing the system. Perturbations are accepted with a probability based on

34

point-tracking/figs/1dexample/log-pdfs.eps

2.5 Position optimisation

how energetically favourable it is to accept the perturbation. At higher temper-
atures, the cost function is raised to a small power, making perturbations more
likely to be accepted. As the system is annealed, the power is increased, mak-
ing it harder to escape from the current optimum. However, in this case, the
global optimum is very narrow, so there is only a very small probability that a
perturbation, or indeed any particle based method, will land in the optimum.
Instead, it would be preferable to make the correct peak broader by convolving
the likelihood with a Gaussian to blur it. This gives the following PDF:

p(mi|µ) =
(1− α)

A
+ α

e
(−

e
T
i ei

2(σ2+σ2
b
)
)

2π(σ2 + σ2
b)

, (2.4)

where σb is the size of the blur. This is equivalent to using a value of σ larger
than the true value. Because for large σ, the peak will not be in the correct place,
a schedule is needed to reduce it to its correct value and the most effective way
to do this is by using the EM (Expectation Maximisation) algorithm [29] to find
a PDF which fits the data. This is convenient because it gives us a framework for
calculating unknown variables such as the true value of α and σ. The algorithm
works as follows:

1. Estimate p(mi ∈ MG) and p(mi ∈ MB) given µ, σb and α. The mixture
model is give in Equation 2.4.

2. Recompute the most likely µ using the Gauss-Newton method. Let

K =

p(m1 ∈MG)J1

p(m2 ∈MG)J2
...

 (2.5)

and

f =

p(m1 ∈MG)e1

p(m2 ∈MG)e2
...

 , (2.6)

where J is defined in Equation 1.15. The motion is then recomputed as:

µ← µ + (KTK + λI)−1f , (2.7)

where I is the identity matrix, and λ introduces numerical stability.

35

2. FEATURE BASED TRACKING

µ

σ

−30 −15 0 6 15 30
0.9

 30

 60

 90

120

150
log p(data|µ)
First optimisation
Second optimisation
Local minima

−18

−16

−14

−12

−10

−8

−6

−4

−2

Figure 2.7: The greylevel plot shows the likelihood of the data given the model
parameter, µ, for different levels of blur with the known value of α. The bottom
row in this plot is the same as the graph in Figure 2.6. The graph also shows
the path that EM takes through this space. The calculated values for α are not
shown.

3. Recompute the new values of α and σb from the new value of µ.

This is shown operating on the 1D example in Figure 2.7.

In the presence of large amounts of noise, the EM algorithm can converge on
a solution where σ is too large, as shown in Figure 2.6. Although the precise
value of σ is unknown, we know its approximate value; a large proportion of
the measurement error comes from pixel quantisation, hence σ ∼ 1 pixel. If EM
converges to σ2 � 1, then the optimisation is given a ‘kick’ downwards by forcibly
lowering σ, and recomputing α. The effect of this is shown in Figure 2.7.

36

point-tracking/figs/1dexample/em-bad-me-good-1.eps

2.5 Position optimisation

It should be noted that Guided [139] MLESAC [140] could be used here instead of
EM, and would take in the same prior information and produce an equivalent pos-
terior, except it would not estimate α. It is unclear which would be computation-
ally more efficient, but the current system is sufficient for frame-rate operation.
However, the estimation of α is useful, as will be shown in Section 2.5.1.

EM jointly optimises the posterior probability P (mi ∈ MG) for each point. If
there is a prior estimate of this (see Section 2.5.1) the posterior becomes:

P (mi ∈MG) =
PpαpG

(1−Pp)(1−α)

A
+ Ppα

(2.8)

where

Pp =Pprior(mi ∈MG)

and

pG =
e
(−

e
T
i ei

2(σ2+σ2
b
)
)

2π(σ2 + σ2
b)

.

The covariance of the posterior pose from the feature point tracker is:

Cf =

(
σ2
∑

i

P post(mi ∈MG)JT

i Ji

)−1

, (2.9)

where J is the Jacobian relating the image motion (in pixels) of a point to the
motion parameters (see Equation 1.15).

2.5.1 Calculation of the match prior from SSD

For a given feature point in FO, fn, its correspondence in FI is calculated by
finding the feature point in FI which minimises the SSD of the feature vector
between the feature points. The SSD is a measure of the difference in appearance
of the two feature points, and we make the intuitive assumption that of all the
features in frame n + 1, those that look most like fn (have the smallest SSD)
are the most likely to be correctly matched. In other words, there is likely to
be a relationship between the SSD and the probability that the feature match
represents an inlier. We make explicit use of this relationship by on-line learning

37

2. FEATURE BASED TRACKING

SSD Priors Posteriors
EMFeature

to

matches optimize

Map SSD

Compute
match
priors

Smooth mapping

1 frame delay

probability

Figure 2.8: The feedback loop used to compute the matching prior based on the
SSD, and the matching posteriors from the EM optimiser.

0 2500 5000
0

0.2

0.4

0.6

0.8

1

Sum squared difference

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 m

at
ch

Raw data
Temporally smoothed
Function
Frames 100−760

Figure 2.9: Graphs showing the function which maps SSD to match probability.
The temporally smoothed function and raw data are given for frame 200 in a
sequence.

of a function which maps SSD to inlier probability. This resembles the work
of Tordoff and Murray [139], where the distributions of matching score (in this
case, NCC) for matches and mismatches are modelled with a truncated Rayleigh
distribution and a truncated quadratic respectively. These models are used to
compute the probability of a given score being a correct match. The parameter
of the model was then found from a large quantity of data in an off-line process,
and the estimated probabilities are used to guide a RANSAC[36] based optimizer.
This is extended in [19] where probabilities are not explicitly computed—only a
monotonic relationship between matching score and probability is assumed.

38

point-tracking/figs/match-feedback/loop.eps
point-tracking/figs/ssd_prior/figure.eps

2.6 Results

The EM algorithm used in Section 2.5 calculates the posterior probability that
each match is correct. This information, along with the SSD values for each
match, can be used to provide an estimate of the relationship between SSD and
inlier probability for the next frame. This is achieved by binning the SSD scores
and computing the average inlier probability for each bin. To compensate for the
limited amount of data in each frame (especially for large SSD values), the binned
data is temporally smoothed by an IIR (infinite impulse response) filter with a
time constant of 10 frames. A cubic polynomial is then fitted to the resulting
values using least squares, and this is used as the SSD-to-inlier-probability map-
ping function for the next frame. The polynomial is used as a convenient way
of creating a mapping; since it is not a representation of probabilities, it can in
theory give invalid probabilities. As a result, the polynomial is fed through the
following limiting function:

l(x) : x→

1− ε, x > 1− ε
x, ε ≥ x ≥ 1− ε
ε, ε > x

. (2.10)

Epsilon is set to a small value, (typically 0.01), which prevents the mapping
completely saturating the probability of any of the points.

This feedback loop is illustrated in Figure 2.8. This technique provides a dramatic
improvement in the performance of the point tracker, and the resulting mapping
function can be seen in Figure 2.9. This figure also illustrates the substantial
range of possible functions that can be generated over time, hence the necessity
to use a dynamic as opposed to a statically learned model.

2.6 Results

2.6.1 Synthetic test of point tracking

The robust optimiser was tested using synthetically generated data using the
following algorithm:

1. Place the virtual model in view of the virtual camera.
2. Synthesise corner detection by scattering points about the virtual camera

frame, keeping the ones which land on the model.

39

2. FEATURE BASED TRACKING

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Proportion of inliers

P
ro

ba
bi

lit
y

of
 c

on
ve

rg
en

ce

EM
EM with prior
With kick

Figure 2.10: The synthetic results demonstrate that having a good estimate of
P (mi ∈ MG) greatly improves the probability of a successful convergence. The
extra ‘kick’ downwards yields an improvement of about 1%.

3. Generate a random motion.
4. Reproject the points (with quantisation error) after the motion to simulate

point matching.
5. Generate a probability that the match is correct. This corresponds to a

probability obtained from the SSD.
6. Mismatching is simulated by making some of the points match to a random

location in the image. The probability of this happening is based on the
generated prior.

7. Optimise the position to find the motion.
8. Test the result against the known motion.

The random motion corresponds to a rotation of up to 15◦ and approximately
200 pixels of image motion due to translation. A total of 1000 virtual matches
are generated in each frame, of which about 400 lie up on the model. Figure 2.10
shows the results of this and also clearly illustrates the improvement in perfor-
mance that a good estimate of the matching prior can give. Without a good prior
of P (mi ∈MG), 10% inliers yields a 50% probability of convergence. With a good
estimate, only 3% inliers are needed to yield a 50% probability of convergence.
This is important because frames with only 10% inliers are frequently experi-
enced, and if the probability of convergence was only 50%, the system would
fail frequently. Instead, it succeeds 99% of the time. The downwards kick (see
Section 2.5) yields a small improvement in performance

40

point-tracking/figs/synth/fig.eps

2.6 Results

Figure 2.11: This shows the tracking system coping with large translations. These
consecutive frames are taken 1m apart, corresponding to a speed of 50ms−1

(112mph). In this scene, only the vertical partitions are modelled. As a re-
sult, a large number of the visible features (such as the contents of the desks) are
structural clutter. The outline of the modelled geometry is shown.

2.6.2 Tests on images

The ability of the tracking system to deal with large inter-frame translations is
shown in Figure 2.11. The two frames illustrated were tracked in isolation. The
average image motion of point features between the two frames is 89 pixels, and
the image motion of the edges closest to the camera is over 400 pixels.

This illustrates not only that the point based tracking system is capable of dealing
with large inter-frame motions, but also that it is capable of dealing with large
amounts of structural clutter without failing.

41

point-tracking/figs/results/fig.eps

2. FEATURE BASED TRACKING

2.7 Conclusions

This chapter has presented a new and robust point based tracking system. It is
able to converge on the correct pose even with large motions and a significant
portion of outliers in the data. This has resulted from a combination of several
items:

• An efficient matching scheme. This, along with the FAST feature detector
allows the system to perform full frame matching: the distance that the
object can be moved by is not limited by the matching scheme.

• A robust optimiser based on the EM algorithm which allows:

• A method for estimating the quality of a match based on the matching score
from run time information.

The system is not designed to reduce drift, and as a result, long term tracking
results do not apply to this system. Results of the complete system are given in
Section 5.

42

3. Feature Detection

Corner detection is used as the first step of many vision tasks such as tracking,
SLAM (simultaneous localisation and mapping), localisation, image matching and
recognition. Hence, a large number of corner detectors exist in the literature. It
is still true that when processing live video streams at full frame rate, existing
feature detectors leave little if any time for further processing, even despite the
massive increase in computing power since the inception of the detectors. How-
ever, this thesis is about video rate tracking, where computational resources are
at a premium.

In the applications described above, corners are typically detected and matched
into a database, thus it is important that the same real-world points are detected
repeatably from multiple views [127]. The amount of variation in viewpoint under
which this condition should hold depends on the application. It also follows
that corner features must also be localisable, otherwise they would not reliably
correspond to the same thing in the image.

This section will describe the development of a corner detector which is compu-
tationally efficient enough to be used as part of the frame-rate tracking system.
In Section 3.2, the principle behind the feature detector is described. Section 3.3
describes how the feature detector can be implemented in a computationally ef-
ficient manner, and Section 3.4 illustrates how this can be improved generalised
by using machine learning. The performance of the detector is then analysed in
Section 3.5, both in terms of computational efficiency and the reliability of the
features detected.

44

3.1 Previous work

translation
Pure

Translation and
rotation

B

A

Figure 3.1: This illustrates a hypothetical feature detector which detects features
which contain the top portion of a circle. In the first case (A), only pure image
translation is allowed, so this feature (shown by a small box) can be reliably
detected after the transformation. In the second (B) case rotation is allowed, so
a detector capable of detecting the feature under the allowed transformations will
detect all points on the circle. Allowing a wider range of transformations requires
that stronger restrictions must be placed on what should constitutes a feature.

3.1 Previous work

3.1.1 Corner detectors

In the literature, the words “feature” and “corner” are used somewhat inter-
changeably to refer to small, two dimensional points of interest. These often
arise as the result of geometric discontinuities, such as the corners of real world
objects, but they may also arise from small patches of texture. Most algorithms
are capable of detecting both kinds of points of interest, though the intuition
behind the algorithms often comes explicitly from one or the other.

Corners have the following properties:

1. They should have variation in two directions. If there is no variation, then
the feature cannot be localised beyond all uniform patches of the image of
the same colour. If there is only one dimensional variation (an edge), then
the the feature can be localised normal to the edge, but not tangent to it,
since there is no variation tangent to the edge. More formally, the variation
of the detected features must be matched to the transformation which will
be present in the problem. This is illustrated in Figure 3.1.

2. Features need to be unique so that they are not mismatched. None of the
detectors attempt to solve this problem. It is typically solved at a later
stage.

45

fast-features/figs/transformations/transform.eps

3. FEATURE DETECTION

Corner detectors can be categorised according to the kind of algorithm used.
These are broadly:

1. Edge detection and chaining, followed by analysis of chained edges.
[79, 84, 98, 105, 122]

2. Edge detection followed by local line fitting to find rapid changes in
direction or appearance. [25, 50]

3. Edge detection followed by local analysis of first and/or second derivatives
of the image. [71, 150]

4. Analysis of first and/or second derivatives of the image.
[52, 69, 88, 90, 92, 101, 102, 109, 110, 130, 153]

5. Analysis of the SSD between an image patch and a shifted version of itself.
[52, 69, 107, 110, 130, 153]

6. Analysis of a patch to see if it “looks” like a corner.
[24, 32, 47, 88, 90, 107, 133, 142]

It should be noted that this is not absolute classification as many corner detectors
belong to multiple classes.

The implementation of these feature detection algorithms is frequently done in
the following manner:

1. A function, C, of an image, I, is applied to the image which computes corner
strength at each pixel location in the image based on local information,
resulting in a corner strength image.

2. The corner strength image is then thresholded, leaving a list of candidate
pixels whose corner strength exceeds the threshold. This step discards most
of the information in the image.

3. Some form of suppression is then performed on the list of candidate pixels to
discard yet more information. This step typically (but not exclusively) used
non maximal suppression so that only local maxima in the corner strength
function remain.

46

3.1 Previous work

The various corner detectors vary widely in how they perform these three steps.
The most popular class of corner detectors operate by computing approximate
second derivatives, either of the image or of some response of the image. Examples
of this include computing image curvature or the Laplacian of the image. If a
function only has first derivatives then it is a ramp in one direction, so it is
completely uniform, and therefore self-similar in the direction orthogonal to the
ramp. Despite the differences in approach, many of the detectors can be shown
to be extracting the same information, up to some approximation.

An edge (usually a step change in intensity) in an image corresponds to the
boundary between two regions. An edge exists where the gradient is both large
and locally maximal. At corners of regions, this boundary changes direction
rapidly. Several techniques were developed which involved detecting (for example
by segmentation) and chaining edges with a view to analysing the properties of
the edge. A comparison of some of these methods which use chain coded curves
is undertaken in [84, 122]. Several techniques involve parameterising edges with
cubic splines. Langridge [79] and Medioni [98] look for fast changes in the first
derivative at points where the spline deviates a long way from the control point.
The Curvature Scale Space [105] detector computes the radius of curvature of
the contour and detects maxima of curvature where the maxima are significantly
larger than the closest minima.

One of the problems with these techniques is the reliance on the method used to
perform segmentation and chaining of the contours. As a result, many other tech-
niques look for rapid changes in an edge by examining the local image properties
instead.

Haralick and Shapiro [50] first detect edgels and use these as candidate points
for corners. At each candidate point a line is fitted to the nearby edgels, and the
image is examined where this line intersects a small circle around the candidate
point. If the image gradient directions differ by more than a certain threshold,
then the point is considered to be a corner since the edge direction is changing
rapidly. They suggest using either a straight line or a cubic polynomial for the
line fitting.

Cooper [25] proposes a detector which first finds edges and their directions. They
then take a patch on an edge and compare it to the patches on either side in the
direction of the local contour to detect self similarity.

Kitchen and Rosenfeld [71] look for rapid changes in the edge direction by mea-
suring the derivative of the gradient direction along an edge, multiplied by the

47

3. FEATURE DETECTION

magnitude of the gradient. The resulting corner response is

C =
gxxg

2
y + gyyg

2
x − 2gxygxgy

g2
xg

2
y

(3.1)

where, in general,

gx =
∂g

∂x
, gxx =

∂2g

∂x2
, etc. . . ,

and g is either the image or a bivariate polynomial fitted locally to the image.
The best results which were reported used a quadratic polynomial.

Wang and Brady [150] propose a detector which searches for large total surface
curvature on an image edge. The gradient of the image is ∇I, the normal is
n̂ = ∇I

|∇I|
and t̂ is the tangent. Reformulating I(x, y) as I(t, n) where t and n

parametrise a basis set aligned with t̂ and n̂, the curvature κ is then approximated
as:

κ ≈
∂2I
∂t2

|∇I| , where |∇I|2 � 1. (3.2)

The algorithm is searching for high curvature, i.e. κ2 > S, so the response function
becomes

C =
∂2I

∂t2
− S |∇I|2 . (3.3)

Since the gradient has to be large, the points are also thresholded on gradient
magnitude. This ensures that points only lie on an edge. The points are further
restricted to lie on the steepest part of the edge, where ∂2I

∂n2 = 0. This simplifies
Equation 3.3 to:

C = ∇2I − S |∇I|2 . (3.4)

The authors note that the computation of first and second derivatives may require
smoothing (especially if the source image is noisy), and that smoothing causes
displacement of the corner. To alleviate this, they derive an expression which
relates corner displacement to the smoothing factor under the assumption that
the corner type is a 90◦ step corner.

The assumption that corners exist along edges is an inadequate model for patches
of texture and point like features, and is difficult to use at ‘T’-junctions. Moravec [107]
proposed a feature detector which measures self similarity of an image by taking
the SSD between an image patch and a shifted version of itself. The image patch
is shifted horizontally, vertically and along the two diagonals and C is defined

48

3.1 Previous work

to be the smallest SSD. Harris [52] built on this by computing an approxima-
tion to the second derivative of the SSD with respect to the shift. This is both
computationally more efficient and can be made isotropic. The result is:

H =

[
Î2
x ÎxIy

ÎxIy Î2
y

]
, (3.5)

where ̂ denotes averaging performed over the area of the image patch. Further,
Harris uses a smooth circular window over which to perform the averaging which
results in an isotropic and less noisy response.

It is often claimed that H is equal to the negative second derivative of the au-
tocorrelation. However, they are not the same (see Appendix B). Harris defines
the corner response to be

CH = |H| − k(traceH)2. (3.6)

This is large if both eigenvalues are large, and it avoids explicit computation of
the eigenvalues. It has been shown [109] that this is an approximate measure of
the image curvature, though the approximation is different to the one used in
Equation 3.1 and 3.4. Thresholding and non-maximal suppression is then used
on the corner strength image.

Shi and Tomasi [130] conclude that under affine motion, it is better to use the
smallest eigenvalue of H as the corner strength function:

C = min λ1, λ2. (3.7)

A number of other suggestions [52, 69, 110, 130] have been made for how to com-
pute the corner strength from H, and these have been shown to all be equivalent
to various matrix norms of H [154].

Zheng et al. [153] perform an analysis of the computation of H, and found some
suitable approximations which allowed them to compute only two smoothed im-
ages, instead of the three previously required. They also derive a function k(x, y)
to replace k in Equation 3.6 in order to improve detection and stability. The
resulting response function is

C = I2
xI2

yy + I2
yI2

xx − k(x, y) (I2
x + I2

y). (3.8)

They then perform an analysis of this function and show that it is approximated
by:

C ≈ ‖∇θ(x, y) ‖2 (3.9)

49

3. FEATURE DETECTION

where θ(x, y) is the direction of the image gradient. In other words, computation
of the local SSD roughly measures the rate of change of edge direction.

In [109], Noble explains the Harris operator in terms of the first fundamental
form of the image surface. From analysis of the second fundamental form, a new
detector is proposed which detects points where the local surface is hyperbolic.
The corner strength is defined as the probability that the classification of the
surface being hyperbolic is correct.

A topographic approach is taken in [92]. Gradients are computed, and the scale of
the magnetic vector potential (based on the gradients being elementary currents)
is computed for every point. A topographic argument is used to derive a corner
strength function based on the gradient of the potential.

An alternative approach to the problem of finding a scalar value which measures
the amount of second derivative is to take the Laplacian of the image. To reduce
the amount of noise (second derivatives greatly amplify noise), the smoothed
Laplacian is computed by convolving the image with the LoG (Laplacian of a
Gaussian). Since the LoG kernel is symmetric, an alternative interpretation is
that this is performing matched filtering for features which are the same shape
as a LoG. As a result, the variance of the Gaussian determines the size (or scale)
of features of interest. It has been noted [102] that the locations of maxima of
the LoG over different scales are particularly stable.

Lowe [88] obtains scale invariance by convolving the image with a DoG (Differ-
ence of Gaussians) kernel at multiple scales (3 per octave), retaining locations
which are a maxima in both space and scale. DoG is used because it is a good
approximation for LoG and much faster to compute, especially as blurred images
at a large range of scales are required for other parts of the SIFT algorithm. The
DoG (and therefore LoG) kernel responds quite strongly to edges. To reject edge
like features, the eigenvalues of the Hessian of the image are computed at the
correct scale for each detected feature. If the ratio of the eigenvalues is greater
than 10, then the point is rejected, since the gradient is approximately constant
in one direction. This method can be contrasted with Equation 3.4, where the
Laplacian is compared to the magnitude of the edge response. In [58], several
methods of computing DoG kernels are compared. Experimental evaluation show
that the binomial kernel produces satisfactory results while giving a significant
saving of computational resources. For this to work effectively at multiple scales,
two scales per octave must be used, which also gives a further speed improvement.

50

3.1 Previous work

Harris-Laplace [101] features are detected using a similar approach. An image
pyramid is built (with a scale of 1.2 between successive layers of the pyramid),
and features are detected by computing CH (Equation 3.6) at each layer of the
pyramid. Features are selected if they are a local maximum of CH in the image
plane and a local maxima of the LoG across scales.

Recently, scale invariance has been extended to consider features which are in-
variant to affine transformations [13, 102, 123, 124]. However, unlike the 3D scale
space, the 6D affine space is too large to search, so all of these detectors start
from corners detected in scale space. These in turn rely on 2D features selected
in the layers of an image pyramid.

Another major class of corner detectors work by examining a small patch of an
image to see if it “looks” like a corner. Since second derivatives are not computed,
a noise reduction step, such as Gaussian smoothing, is not required. The result
of this is that these corner detectors are computationally efficient since they only
examine a small number of pixels for each corner detected. A corollary of this is
that they tend to perform poorly on images with only large scale features such
as blurred images. The corner detector presented in this section falls into this
category.

The method presented in [47] assumes that a corner resembles a blurred wedge,
and finds the characteristics of the wedge (the amplitude, angle and blur) by
fitting it to the local image. The idea of the wedge is generalised in [133], where
a method for calculating the corner strength is proposed which computes self
similarity by looking at the proportion of pixels near to a centre, or nucleus, which
are significantly different from the nucleus. The detector operates by computing
a weighted sum of the number of pixels inside a disc whose intensity is within
some threshold of the centre value. Pixels closer in intensity to the nucleus receive
a higher weighting. This measure is known as the USAN (the univalue segment
assimilating nucleus). A low value for the USAN indicates a two dimensional
feature, since the centre pixel is very different from most of its surroundings. A set
of rules is used to suppress qualitatively bad features, and then local minima of the
USAN (SUSAN—Smallest USAN) are selected from the remaining candidates.

Trajkovic and Hedley [142] use a similar idea: that a patch is not self similar if
pixels generally look different from the centre of the patch. This is measured by
considering a circle. fC is the pixel value at the centre of the circle, and fP and
fP ′ are the pixel values at either end of a diameter line across the circle. The
response function is defined as

C = min (fP − fC)2 + (fP ′ − fC)2. (3.10)

51

3. FEATURE DETECTION

This can only be large in the case where there is a 2 dimensional feature. The
test is performed on a Bresenham circle. Since the circle is discretised, linear or
circular interpolation is used in between discrete orientations in order to give the
detector a more isotropic response. To this end, the authors present a method
whereby the minimum response function at all interpolated positions between
two pixels can be efficiently computed. Computing the response function requires
performing a search over all orientations, but any single measurement provides
an upper bound on the response. To speed up matching, the response in the
horizontal and vertical directions only is checked. If the upper bound on the
response is too low, then the potential corner is rejected. To speed up the method
further, this fast check is first applied at a coarse scale.

A fast radial symmetry transform is developed in [90] to detect points. Points
have a high score when the gradient is both radially symmetric, strong, and of a
uniform sign along the radius. The scale can be varied by changing the size of
the area which is examined for radial symmetry. The detected points have some
resemblance DoG features.

An alternative method of examining a small patch of an image to see if it looks
like a corner is to use machine learning to classify patches of the image as corners
or non-corners. The examples used in the training set determine the type of
features detected. In [32], a three layer neural network is trained to recognise
corners where edges meet at a multiple of 45◦, near to the centre of an 8 × 8
window. This is applied to images after edge detection and thinning. It is shown
how the neural net learned a more general representation and was able to detect
corners at a variety of angles. It is also noted that parallel nature of neural nets
makes it particularly suitable for computer vision applications. In [24], features
are chosen to be black discs on a white background (for part of a fiducial marker
system). For computational efficiency, a cascade classifier is used. The first stage
is a Bayes decision rule with a very low false negative rate and operating on only
a pair of pixels. The second stage uses a condensed nearest-neighbour classifier.
As the type of features becomes more complex, this (using machine learning to
recognise corners) turns into the object recognition task.

3.1.2 Comparison of feature detectors

Considerably less work has been done on comparison and evaluation of feature
detectors than on inventing new detectors (this is frequently noted in papers on
this topic). Mohannah and Mokhtarian [104] evaluate performance by warping

52

3.2 The segment-test algorithm

test images in an affine manner by a known amount. They define the ‘consistency
of corner numbers’ as

CCN = 100× 1.1−|nw−no|, (3.11)

where nw is the number of features in the warped image and no is the number of
features in the original image. They also define accuracy as

ACU = 100×
na

no
+ na

ng

2
, (3.12)

where ng are the number of ‘ground truth’ corners (marked by humans familiar
with corner detection in general, but not the specific algorithm being tested)
and na is the number of matched corners. This method unfortunately relies on
subjective decisions.

Trajkovic and Hedley [142] define stability to be the number of ‘strong’ matches
(matches detected over three frames in their tracking algorithm) divided by the
total number of corners. In [138], a similar method is used: a corner in frame n
is stable if it has been successfully tracked from frame 1 to frame n. Again, these
measurements are clearly dependent on both the tracking and matching methods
used. However, they have the advantage that they can be tested on the data used
by the system, and therefore they evaluate the suitability of the corners for the
specific system of interest.

When measuring reliability, the important factor is whether the same real-world
features are detected from multiple views [127]. This is the definition which will
be used here. For an image pair, a feature is ‘detected’ if it is extracted in one
image and appears in the second. It is ‘repeated’ if it is also detected nearby in the
second. The repeatability is the ratio of repeated features to detected features.
In [127], the test is performed on images of planar scenes so that the relationship
between point positions is a homography. Fiducial markers are projected onto
the planar scene using an overhead projector to allow accurate computation of
the homography.

3.2 The segment-test algorithm

The algorithm presented here belongs to the class of algorithms which examine
a small patch around a candidate point to see if it “looks” like a corner. It
uses the intuitive definition of what may make up a corner, that is an edge is
a boundary between two regions and a corner occurs where the edge changes

53

3. FEATURE DETECTION

15

11

10

16

14

13
12

p

21

3

4

5

6

7

89

Figure 3.2: 12 point segment test feature detection in an image patch. The
highlighted squares are the pixels used in the feature detection. The pixel at p is
the centre of a candidate corner. The arc is indicated by the dashed line which
passes through 12 contiguous pixels which are brighter than p by more than the
threshold. In this case, θ = 3π/2 and θt = 3π/2 so the point is a corner.

directly suddenly. A point is on a corner if enough of the pixels around the point
are in a different region from the point. Another interpretation is that a point is
a corner if it is surrounded by different pixels (like USAN).

The segment-test algorithm implements this by considering a circle around the
candidate point, p. It looks for the largest arc where the intensities of all the
points on the arc are above the intensity of p (Ip) by some threshold, t, or the
intensity of all points on the arc are below Ip by t. The point is a corner if

θ ≥ θt, (3.13)

where θ is the angle of the arc and θt is some threshold.

In practice, the image is discretised rather than continuous, so the measurements
are made in a Bresenham circle of radius r around the candidate point. An
approximation to θt is made by testing only at pixel locations on the Bresenham
circle. This is used to define the segment test criterion:

Segment test criterion: There is a feature at p if, in a Bresenham circle of
radius r around p, there are at least n contiguous pixels which are either all
brighter than Ip by t or all darker than Ip by t.

54

fast-features/figs/corner/corner.eps

3.2 The segment-test algorithm

A B C

Figure 3.3: Left: a test pattern containing polygons with lines joining at a variety
of angles, and a selection of junctions. Centre: the first image from the Oxford
basement sequence (512x512). Right: a photograph of King’s College, Cambridge
(768x576).

This is illustrated in Figure 3.2. The criterion given above describes an entire
family of corner detectors since the radius of the circle over which the segment
test is performed, and the number of contiguous pixels required, can both be
varied. The remainder of this section will only consider detectors with r = 3
pixels. The detector will be demonstrated on a small set of test pictures shown
in Figure 3.3.

The following notation will be used for the rest of this section. I is the image,
p is a pixel, and Ip is the intensity of pixel p. For each location on the circle
x ∈ {1 . . . 16} (as shown in Figure 3.2), the pixel at position x relative to p is
denoted p→ x, and its intensity is denoted Ip→x.

An intuitive understanding about the kind of features detected can be found
by comparing the Segment-Test detector to the LoG detector. Consider the
Segment-Test detector with θt = 2π. Features would be detected if they appear
as a bright dot surrounded by dark pixels, or a dark dot surrounded by bright
pixels. The result is a detector which is somewhat similar to a heavily quantised
approximation to the LoG/DoG detector. Relaxing the requirements by allowing
θt < 2π results in a detector which still responds to the same kind of features,
except that they only need to look like LoG features within a segment of size
θt, as opposed to the entire circle. The detector is rotationally invariant, so the
segment of size θt can appear at any angle. The results of this algorithm applied
to the test patterns (Figure 3.3) are shown in Figure 3.4.

55

fast-features/figs/test_images/base/testpat-aa.eps
fast-features/figs/test_images/base/oxford-1.eps
fast-features/figs/test_images/base/kings.eps

3. FEATURE DETECTION

A B C

Figure 3.4: The segment-test algorithm with r = 3 and n = 12. Left: (A) 318
features. Centre: (B) 1482 features (t = 17). Right: (C) 2594 features (t = 50).
Features are indicated with a red dot showing the centre of the feature and a
circle concentric with the dot showing the pixels that the segment test operates
on.

3.3 FAST: accelerating the segment test

One of the key benefits of the algorithm is that for the case of r = 3 and n = 12,
the detector can be written to be very computationally efficient. This is achieved
using the FAST [118, 121] (Features from Accelerated Segment Test) algorithm.
If n contiguous pixels are required, then a minimum of n tests are needed to
determine if p is a feature. However, if p is not a feature, then this can often be
determined with far fewer tests. Consider examining pixels at opposite sides of
the circle, such as pixels 1 and 9 in Figure 3.2. If both of these pixels are close
in intensity to p, then the largest contiguous ring of bright (or dark) pixels can
be no more than seven pixels long. If this is the case, then p is not a feature,
and this has been determined with only two tests. For the case of n = 12, it is
reasonably easy to deduce a good ordering of tests. The full algorithm for n = 12
is given in Algorithm 2.

This detector exhibits high performance, but it has several weaknesses:

1. Multiple features are detected adjacent to one another.

2. The high-speed test does not generalise well for n < 12.

56

fast-features/figs/test_images/12/testpat-aa.eps
fast-features/figs/test_images/12/oxford-1.eps
fast-features/figs/test_images/12/kings.eps

3.3 FAST: accelerating the segment test

3. The choice and ordering of the fast test pixels contains implicit assumptions
about the distribution of feature appearance.

4. Knowledge from the first 4 tests is discarded when the full segment test
criterion is applied.

The first item is dealt with in Section 3.3.1, and the others are dealt with in
Section 3.4.

57

3. FEATURE DETECTION

Algorithm 2 The FAST algorithm for n = 12 and r = 3. Since examining pixels
is expensive, care has been taken to order the tests so that the number of pixels
examined is low.
Since n = 12, at least 3 out of four of the pixels 1, 5, 9 and 13 must be brighter than

Ip by t or at least 3 out of four must be darker than Ip.

Examine pixels 1 and 9
if(|Ip→1 − Ip| ≤ t AND |Ip→9 − Ip| ≤ t)

p cannot be a feature.
The algorithm normally terminates here.

Examine pixel 13
if(2 or more examined pixels are brighter than Ip by t)

if(Only 2 pixels are brighter than Ip by t)
Examine pixel 5

if(3 examined pixels are brighter than Ip by t)
Test p using the full segment test criterion.
This is slow, but rarely required.

else

p is not a feature.

else if(2 or more examined pixels are darker than Ip by t)
if(Only 2 pixels are darker than Ip by t)

Examine pixel 5

if(3 examined pixels are darker than Ip by t)
Test p using the full segment test criterion.

else

p is not a feature.

else

p is not a feature.

58

3.3 FAST: accelerating the segment test

3.3.1 Scoring and Filtering

The segment test algorithm tends to detect multiple adjacent features. To remove
these, they must be scored, and features with a score which is not locally maximal
are removed. Most algorithms operate by computing a C for each pixel in the
image. If this is done, non-maximal suppression can be performed easily by
testing the strength of a candidate corner against all nearby candidates to see if
it is a local maximum. Typically, this will be done in a 3× 3 square.

Since the segment test does not compute a corner response function, non maximal
suppression cannot be applied directly to the resulting features. Consequently, a
score function V must be computed for each detected corner, and non-maximal
suppression must be applied to V to remove corners which have an adjacent
(within a 3× 3 square centred on p) corner with higher V .

There are several intuitive definitions for V :

1. The maximum value of n for which p would still be detected as a corner.

2. The maximum value of t for which p would still be detected as a corner.

3. The sum of the absolute differences in intensity between the pixels in the
contiguous arc and the centre pixel.

Definitions 1 and 2 are very highly quantised measures: many pixels will score
the same value if either definition 1 or 2 is used. For speed of computation, a
slightly modified version of 3 is used. V is given by:

V = max

(∑

x∈B

|Ip→x − Ip| − t ,
∑

x∈D

|Ip − Ip→x| − t

)
(3.14)

where

B ={x|Ip→x ≥ Ip + t} (Brighter pixels)

D ={x|Ip→x ≤ Ip − t} (Darker pixels)

Subtracting t in Equation 3.14 biases the score towards favouring strong features
(ones with large brightness differences) over weak ones with more contiguous
pixels.

59

3. FEATURE DETECTION

3.4 Even FASTer: a machine learning approach

In this section, the other shortcomings of the FAST detector are addressed by
using machine learning to work out an efficient order for questions to be asked
in. The process operates in two stages. In order to build a corner detector for
a given n, first, corners are detected from a set of images (preferably from the
target application domain) using the segment test criterion for n and a convenient
threshold. This uses a slow algorithm which for each pixel simply tests all 16
locations on the circle around it.

Each of the 16 pixels surrounding p can have one of three different states: They
can be much brighter than p, much darker than p, or roughly the same intensity.
More formally, the state of p→ x (Sp→x) can have one of three states:

Sp→x =

d, Ip→x ≤ Ip − t (darker)
s, Ip − t < Ip→x < Ip + t (similar)
b, Ip + t ≤ Ip→x (brighter)

(3.15)

Choosing an x (choosing a pixel in the ring to be examined) and computing Sp→x

for all p ∈ P (the set of all pixels in all training images) partitions P into three
subsets, Pd, Ps, Pb, where each p is assigned to PSp→x

, i.e. Pα = {p|Sp→x = α}.

Let Kp be a Boolean variable which is true if p is a corner and false otherwise.
Stage 2 employs the algorithm used in ID3 [116] and begins by selecting the x
which yields the most information about whether the candidate pixel is a corner,
measured by the entropy of Kp.

The entropy of K for the set P is:

H(P) = (c + c̄) log2(c + c̄)− c log2 c− c̄ log2 c̄ (3.16)

where c =
∣∣{p|Kp is true}

∣∣ (number of corners)

and c̄ =
∣∣{p|Kp is false}

∣∣ (number of non-corners)

The choice of x then yields the information gain:

H(P)−H(Pd)−H(Ps)−H(Pb). (3.17)

Having selected the x which yields the most information, the process is applied
recursively to all three subsets i.e. xb is selected to partition Pb into Pb,d, Pb,s,
Pb,b, xs is selected to partition Ps into Ps,d, Ps,s, Ps,b and so on, where each x is
chosen to yield maximum information about the set it is applied to. The process

60

3.4 Even FASTer: a machine learning approach

Figure 3.5: Approximately one third of the C-code generated for the 9 point
FAST detector, shown in 0.3 point text. A total of 4235 lines of code are gener-
ated.

p

2 9 8
6

4

5
7

3
1

2

1
4 7

9

10

11

8

5
3
6

12

p

A B

Figure 3.6: Ordering of tests for (A) the learned 9 point detector and (B) the
learned 12 point detector, when all tests pass with a positive answer. If the first
test fails, the red square is tested, if the second test fails, the blue square is tested,
then green, then yellow.

terminates when the entropy of a subset is zero. This means that all p in this
subset have the same value of Kp, i.e. they are either all corners or all non-corners.
This is guaranteed to occur since K is an exact function of the learning data.

This creates a ternary decision tree which can correctly classify all corners seen in
the training set and therefore (to a close approximation) correctly embodies the
rules of the chosen FAST corner detector. This decision tree is then converted
into C-code, creating a long string of nested if-then-else statements which is
compiled and used as a corner detector. This is illustrated in Figure 3.5. For
full optimisation, the code is compiled twice, once to obtain profiling data on
the test images and a second time with arc-profiling enabled in order to allow
reordering optimisations. In some cases, two of the three subtrees may be the
same. In this case, the Boolean test which separates them is removed.

61

fast-features/figs/example_trees/9.eps
fast-features/figs/example_trees/12.eps

3. FEATURE DETECTION

A (n = 8) B (n = 9) C (n = 10) D (n = 11) E (n = 12)

Figure 3.7: Segment test corner detection on a test pattern with non-maximal
suppression and r = 3.

A (n = 8) B (n = 9) C (n = 10) D (n = 11) E (n = 12)

Figure 3.8: Examples of detected corners where the angle is the maximum de-
tectable angle.

3.4.1 Example detectors and features

An understanding about the decision tree can be gained by looking at a small
part of the tree, which is shown in Figure 3.6. The figure shows how the detector
orders tests such that two consecutive failures will result in a point being rejected.

The results of this corner detector with r = 3 and n = 8 . . . 12 on the test
pattern are shown in Figure 3.7. In Figure 3.7 A–D especially, a lack of rotational
invariance in detection can be observed when the angle between line segments is
close to the maximum detectable angle. An illustration of the type of points
detected is given in Figure 3.8. This is especially clear for A. Although this is not
a general edge detector, it does respond strongly to edges at some orientations.
The reason for this is shown in Figure 3.8 A: the example corner is an edge slightly
off the vertical.

When different corner detectors are run on the test pattern, the differences are
very clear. However, when the detector is applied to real scenes, as shown in
Figures 3.9 and 3.10, the difference between the detectors appears considerably
less marked. As n decreases, the segment test detector becomes less susceptible
to detecting patches of noise as features. This can be seen in Figure 3.10: in C,
features are detected in the noisy patch on the ceiling, whereas in B, these are not

62

fast-features/figs/test_images/8-nonmax/testpat-aa.eps
fast-features/figs/test_images/9-nonmax/testpat-aa.eps
fast-features/figs/test_images/10-nonmax/testpat-aa.eps
fast-features/figs/test_images/11-nonmax/testpat-aa.eps
fast-features/figs/test_images/12-nonmax/testpat-aa.eps
fast-features/figs/test_images/8-nonmax/example.eps
fast-features/figs/test_images/9-nonmax/example.eps
fast-features/figs/test_images/10-nonmax/example.eps
fast-features/figs/test_images/11-nonmax/example.eps
fast-features/figs/test_images/12-nonmax/example.eps

3.4 Even FASTer: a machine learning approach

present. The reason for this is that t has been set such that the same number of
features has been detected, regardless of n. As n decreases, more points pass the
segment test, so in order to keep the number of features approximately constant,
t has to increase. At lower values of n, the detector therefore becomes less prone
to detecting noise.

One shortcoming of the segment test algorithm is shown in detail in Figure 3.10 E.
The segment can respond to sloped delta edges because the circle of tested pixels
misses the edge due to quantisation.

63

3. FEATURE DETECTION

A (n = 8) B (n = 9)

C (n = 10) D (n = 11)

E (n = 12)

Figure 3.9: Segment test corner detection on a picture of King’s College, Cam-
bridge with non-maximal suppression and r = 3.

64

fast-features/figs/test_images/8-nonmax/kings.eps
fast-features/figs/test_images/9-nonmax/kings.eps
fast-features/figs/test_images/10-nonmax/kings.eps
fast-features/figs/test_images/11-nonmax/kings.eps
fast-features/figs/test_images/12-nonmax/kings.eps

3.4 Even FASTer: a machine learning approach

A (n = 8) B (n = 9)

C (n = 10) D (n = 11)

E (n = 12)

Figure 3.10: Segment test corner detection on the first picture of the Oxford
corridor sequence, with non-maximal suppression and r = 3. The magnified
cutout in E shows that the segment test algorithm responds quite strongly to
sloped delta edges.

65

fast-features/figs/test_images/8-nonmax/oxford-1.eps
fast-features/figs/test_images/9-nonmax/oxford-1.eps
fast-features/figs/test_images/10-nonmax/oxford-1.eps
fast-features/figs/test_images/11-nonmax/oxford-1.eps
fast-features/figs/test_images/12-nonmax/oxford-1.eps

3. FEATURE DETECTION

to match frame 2

Warp frame 1

features in frame 2

positions to detected

warped feature

compare

Detect features in frame 1 Detect features in frame 2

Figure 3.11: Illustration of the system used to test repeatability of a feature
detector. A 3D CAD model of the scene is used to warp frame 1 correctly to
match frame 2. In this example, one feature detected in frame 1 is missing in
frame 2.

3.5 Evaluation

3.5.1 Repeatability

Repeatability is measured using the method of Schmid and et al. [127]: a feature
detector has good repeatability if two different images of the same object have the
same real-world features detected in both images. To measure this, two pictures
of a scene are taken from different viewpoints, and features are detected in both
images. If a feature in the first image appears near to a feature in the second
image, then it is assumed that the same ‘real-world’ feature has been detected in
both viewpoints. This measure provides an upper bound on the performance of
a feature detection and matching scheme, since features have to be detected from
multiple views before they can be matched across multiple views.

In [127], images of a planar scene were used to test the repeatability, making it

66

fast-features/figs/repeatability-explain/repeatability.eps

3.5 Evaluation

relatively straightforward to compute where points detected in one image should
appear in another. Using planar scenes tests the ability of the detectors under
mostly affine warps (since image features are small) under realistic conditions.
This test is not all that well matched to the intended application domain of
this feature detector, so instead a 3D surface model was used to compute where
detected features should appear in other views (illustrated in Figure 3.11). This
allows the repeatability of the detectors to be analysed on features caused by
geometry such as corners of polyhedra, occlusions and ‘T’-junctions. Bas-relief
textures are also modelled as planar so that repeatability can be tested under
non-affine warping.

A margin of error in position must be allowed when classifying points as the same
‘real-world’ feature because:

1. The alignment may not be perfect.

2. The model may not be perfect.

3. The camera model (especially regarding radial distortion) is not perfect.

4. The detector may find a maximum on a slightly different part of the feature
in the two frames. This becomes more likely as the change in viewpoint and
hence change in shape of the feature becomes large.

Instead of using fiducial markers, the 3D model is aligned to the scene by hand
and is then optimised using a blend of simulated annealing and gradient descent
to minimise the SSD between all pairs of frames and reprojections.

To compute the SSD between frame i and the reprojected frame j, the position
of all points in frame j are found in frame i. The images are then bandpass
filtered. High frequencies are removed to reduce noise, by using a Gaussian blur
with σ = 1 pixel. Low frequencies are removed to reduce the impact of lighting
changes by subtracting image blurred by a Gaussian with σ = 20 pixels. To
improve the speed of the system, the SSD is only computed using 1000 random
points (as opposed to every point). In a typical frame the maximum alignment
error was reduced to under 5 pixels, so this was used as the margin of error in
position.

In order to judge the quality of the FAST detector, the tests in this section
compare it to several feature detectors, both well known and state of the art:

67

3. FEATURE DETECTION

Figure 3.12: Box dataset: photographs taken of a test rig (consisting of pho-
tographs pasted to the inside of a cuboid) with strong changes of perspective,
changes in scale and large amounts of radial distortion. This tests the corner
detectors on planar textures.

1. SUSAN reference implementation [132]

2. SIFT (the multi-scale DoG detector) [88]

3. Harris [52]

4. Shi and Tomasi [130]

5. Harris-Laplace [101]

These detectors are tested against 224 image pairs from 3 different scenes. These
scenes are shown in Figures 3.12, 3.13 and 3.14. The repeatability is computed
as the number of corners per frame is varied. For comparison a scattering of
random points is also included as a baseline measure, since in the limit that every
pixel is detected as a corner, the repeatability is 100%. The FAST detectors are
compared in Figure 3.15, which shows that the 9 point FAST detector is the best.
Comparisons to other detectors are shown in Figure 3.16.

68

fast-features/figs/repeatability-datasets/box/video_frame-0000.eps
fast-features/figs/repeatability-datasets/box/video_frame-0001.eps
fast-features/figs/repeatability-datasets/box/video_frame-0002.eps
fast-features/figs/repeatability-datasets/box/video_frame-0003.eps
fast-features/figs/repeatability-datasets/box/video_frame-0004.eps
fast-features/figs/repeatability-datasets/box/video_frame-0005.eps
fast-features/figs/repeatability-datasets/box/video_frame-0006.eps
fast-features/figs/repeatability-datasets/box/video_frame-0007.eps
fast-features/figs/repeatability-datasets/box/video_frame-0008.eps
fast-features/figs/repeatability-datasets/box/video_frame-0009.eps
fast-features/figs/repeatability-datasets/box/video_frame-0010.eps
fast-features/figs/repeatability-datasets/box/video_frame-0011.eps
fast-features/figs/repeatability-datasets/box/video_frame-0012.eps
fast-features/figs/repeatability-datasets/box/video_frame-0013.eps

3.5 Evaluation

Figure 3.13: Maze dataset: photographs taken of a prop used in an augmented
reality application. This set consists of textural features undergoing projective
warps as well as geometric features. There are also significant changes of scale.

To test robustness to image noise, increasing amounts of Gaussian noise were
added to the bas-relief dataset. It should be noted that the noise added is in
addition to the significant amounts of camera noise already present (from thermal
noise, electrical interference, and etc.).

Shi and Tomasi [130] derive their result for better feature detection on the as-
sumption that the deformation of the features is affine. In the box and maze
datasets, this assumption holds and it can be seen in Figure 3.16 A and B that
the detector outperforms the Harris detector. In the bas-relief dataset, this as-
sumption does not hold, and interestingly, the Harris detector outperforms the
Shi and Tomasi detector in this case.

Mikolajczyk and Schmid [101] evaluate the repeatability of the Harris-Laplace
detector by examining planar scenes as described in [126]. Their results show
that Harris-Laplace points outperform both DoG points and Harris points in
repeatability. For the box dataset, the results presented here verify that this
is correct for up to about 1000 points per frame (a typical number, commonly
used); the results are somewhat less convincing in the other datasets, where points
undergo non-projective changes.

69

fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0000.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0001.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0002.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0003.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0004.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0005.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0006.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0007.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0008.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0009.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0010.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0011.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0012.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0013.eps
fast-features/figs/repeatability-datasets/maze-4mm/video_frame-0014.eps

3. FEATURE DETECTION

Figure 3.14: Bas-relief dataset: the model is a flat plane, but there are many
objects with significant relief. This causes the appearance of features to change
in a non affine way from different viewpoints.

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

Corners per frame

R
ep

ea
ta

bi
lit

y
%

Fast 9
Fast 10
Fast 11
Fast 12
Fast 13
Fast 14
Fast 15
Fast 16

Figure 3.15: A comparison of the FAST detectors showing that n = 9 is the most
repeatable. For n ≤ 8, the detector starts to respond strongly to edges. The test
is performed on the bas-relief dataset.

In the sample implementation of SIFT [89], approximately 1000 points are gener-
ated on the images from the test sets. The results confirm that this a good choice
for the number of features since this appears to be roughly where the repeatability
curve for DoG features starts to flatten off.

Smith and Brady [133] claim that the SUSAN corner detector performs well in
the presence of noise since it does not compute image derivatives, and hence does
not amplify noise. This claim is supported: although the noise results show that
the performance drops quite rapidly with increasing noise to start with, it soon
levels off and outperforms all but the DoG detector.

70

fast-features/figs/repeatability-datasets/junk/video_frame-0000.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0001.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0002.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0003.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0004.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0005.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0006.eps
fast-features/figs/repeatability-datasets/junk/video_frame-0007.eps
fast-features/figs/repeatability-results/st/graph.eps

3.5 Evaluation

Fast 9
Fast 12
Harris
Shi & Tomasi
DoG
Harris−Laplace
SUSAN
Random

A B

Box dataset Maze dataset

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

Corners per frame

R
ep

ea
ta

bi
lit

y
%

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

Corners per frame

R
ep

ea
ta

bi
lit

y
%

C D

Bas-relief dataset Additive noise

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

Corners per frame

R
ep

ea
ta

bi
lit

y
%

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Noise σ

R
ep

ea
ta

bi
lit

y
%

Figure 3.16: (A)–(C): Repeatability results for the three datasets as the number
of features per frame is varied. (D): repeatability results for the bas-relief data
set (500 features per frame) as the amount of Gaussian noise added to the images
is varied. For FAST and SUSAN, the number of features cannot be chosen ar-
bitrarily; the closest approximation to 500 features per frame achievable is used.

71

fast-features/figs/repeatability-results/noise/legend.eps
fast-features/figs/repeatability-results/box/graph.eps
fast-features/figs/repeatability-results/maze/graph.eps
fast-features/figs/repeatability-results/junk/graph.eps
fast-features/figs/repeatability-results/noise/graph.eps

3. FEATURE DETECTION

The big surprise of this experiment is that the FAST feature detectors, despite
being designed only for speed, outperform the other feature detectors on these
images (provided that more than about 200 corners are needed per frame). It can
be seen in Figure 3.15, that the 9 point detector provides optimal performance,
hence only this and the original 12 point detector are considered in the remaining
graphs.

The DoG detector is remarkably robust to the presence of noise. Since convolution
is linear, the computation of DoG is equivalent to convolution with a DoG kernel.
Since this kernel is symmetric, this is equivalent to matched filtering for objects
with that shape. The robustness is achieved because matched filtering is optimal
in the presence of additive Gaussian noise [131].

FAST, however, is not very robust to the presence of noise. This is to be expected:
since high speed is achieved by analysing the fewest pixels possible, the detector’s
ability to average out noise is reduced.

3.5.2 Performance

Timing tests were performed on a 2.6GHz Opteron and an 850MHz Pentium
III processor. The timing data was taken over 1500 monochrome fields from a
PAL video source (with a resolution of 768 × 288 pixels). The tree-based FAST
detectors for n = 9 and 12 have been compared to the original FAST detector, to
an implementation of the Harris and DoG (difference of Gaussians—the detector
used by SIFT) and to the reference implementation of SUSAN [132].

It should be noted that the implementation of the Harris corner detector uses
Gaussian smoothing for the averaging step in the computation of H (Equa-
tion 3.5). Instead, a box filter of an arbitrary size could be applied efficiently
using an integral image [149]. Regardless of the filtering used, computation of
I2
x, I2

y , IxIy and CH must still be performed for every pixel. Box convolution
using an integral image is asymptotically faster than Gaussian convolution with
the linear dimension of the kernel, though for very small kernels, it is likely that
Gaussian convolution is more efficient due to its simplicity. Therefore, for the size
of kernel used, box filtering is unlikely to lead to a dramatic increase in speed.
Furthermore, using a box filter results in a response which is less rotationally
invariant and it is also is noted by Harris[52] that it results in a noisier response.
This would adversely affect the repeatability of the detector.

72

3.5 Evaluation

Detector Opteron 2.6GHz Pentium III 850MHz
ms % ms %

Fast n = 9 (non-max suppression) 1.33 6.65 5.29 26.5
Fast n = 9 (raw) 1.08 5.40 4.34 21.7
Fast n = 12 (non-max suppression) 1.34 6.70 4.60 23.0
Fast n = 12 (raw) 1.17 5.85 4.31 21.5
Original FAST n = 12 (non-max) 1.59 7.95 9.60 48.0
Original FAST n = 12 (raw) 1.49 7.45 9.25 48.5
Harris 24.0 120 166 830
DoG 60.1 301 345 1280
SUSAN 7.58 37.9 27.5 137.5

Table 3.1: Timing results for a selection of feature detectors run on fields (768×
288) of a PAL video sequence in milliseconds, and as a percentage of the processing
budget per frame. Note that since PAL and NTSC, DV and 30Hz VGA (common
for web-cams) have approximately the same pixel rate, the percentages are widely
applicable. Approximately 500 features per field are detected.

As can be seen in Table 3.1, FAST in general offers considerably higher perfor-
mance than the other tested feature detectors, and the tree-based FAST performs
up to twice as fast as the handwritten version. Importantly, this process is able to
generate an efficient detector for n = 9, which (as was shown in Section 3.5.1) is
the most reliable of the FAST detectors. On modern hardware, FAST consumes
only a fraction of the time available during frame-rate video processing, and on
low power hardware, it is the only one of the detectors tested which is capable of
video rate processing.

Examining the decision tree shows that on average 2.26 (for n = 9) and 2.39 (for
n = 12) questions are asked per pixel to determine whether or not it is a feature.
By contrast, the handwritten detector asks 2.8 questions on average.

Interestingly, the difference in speed between the learned detector and the original
FAST are considerably less marked on the Opteron processor compared to the
Pentium III. This is probably due to the Opteron having a less uniform cost per
pixel than the Pentium III (the system assumes equal cost for all pixel accesses).
To account for this, the entropy gain of Equation 3.17 could be multiplied by a
weight, where computationally cheaper questions have lower weights.

In Table 3.1, the results are given for about 500 features per field which is a
reasonable number given the repeatability results. Since speed is achieved by
leaving the decision tree as early as possible, the speed of corner detection clearly

73

3. FEATURE DETECTION

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5

4

Number of corners

T
im

e
(m

s)

Figure 3.17: This graph shows the relationship between the number of corners
detected and the speed of detection on fields of a PAL video sequence, for the 9
point detector. The test was performed on an Opteron 2.6 GHz.

depends on the number of corners detected. This is not the case for either DoG
or Harris. To complete the picture, a graph of detection speed against average
number of corners per frame is shown in Figure 3.17.

3.6 Conclusions

The FAST feature detector presented in this section is capable of detecting fea-
tures at frame rate while leaving 93% of the CPU time available for further
processing, which is over 5 times faster than the next fastest detector tested.
The high speed of the detector has been achieved by careful design coupled with
machine learning. Furthermore, the same features are detected reliably from a
variety of viewing angles and scales. The tests of real data suggest that the new
FAST detector produces more stable features than any of the commonly used
detection algorithms.

74

fast-features/figs/corner_timing2/graph.eps

4. Edge Based Tracking

4.1 Introduction

An image edge—so called because these features often correspond the the edges
of the objects being viewed—is defined to be points in the image where the
gradient is large, and often also defined to be locally maximal [14, 96]. Typically,
edges are found on geometric edges, such as where one plane meets another at
a different angle, occlusions, where one part of the object occludes another (or
the background) and on surface texture, such as at strong, rapid changes in
albedo. Edges are attractive features to track because the descriptor (a strong
gradient) is remarkably stable under a very wide variety of transformations. A
strong gradient will stay strong even under large changes in lighting strength
and direction. Furthermore, edge features continue to appear on objects under
strong changes of zoom, distance and perspective transformations, and radial
distortion.

4.2 Previous work

One approach to edge based tracking is to use a model and the last known position
of the model to predict approximately where in the image the edges should occur.
Once that is done, the system only looks for edges near to the predicted edge
positions. When the edges have been found, the object pose is then altered to
make the rendered object line up with the image. Since the image is examined
only where edges are expected to be found, this technique is computationally
efficient. This system was first proposed as the RAPiD (Real-time Attitude and
Position Determination) tracking system [51] and has served as the basis of many

76

4.2 Previous work

edge based tracking systems, from which many modifications have been made.

The RAPiD system was designed to determine the six parameters of position
and orientation of a 3D object in 3D space. The 3D position of the object in the
previous frame and a Kalman filter [64] are used to predict the new position of the
object in the current frame. The 3D model consists of a number of edges, along
which control points are placed in 3D. Searches are performed normal to the edge
at each control point to find a nearby image edge. RAPiD takes advantage of
the aperture problem: searches are only preformed at angles of 0◦, 45◦, 90◦ and
135◦ for efficiency. The differential of the edge normal offset of the control points
from the edge is computed with respect to the six motion parameters. The edge
normal motion is determined from the searches, and this is used to update the
pose to minimise the sum squared edge normal distances. This is illustrated in
Figure 4.1. For efficiency (due to the limited computational resources available at
the time), the control points are precomputed, and the visibility of these points
(due to self-occlusion) is computed for a number of viewing positions.

More recently, several approaches to improving the robustness of RAPiD like
systems have been proposed. The definition of an edge used by RAPiD , while
useful, is somewhat vague. Merely detecting ‘strong’ edges can have variable
results. Edges caused by a change in image intensity between two planes at
different angles will disappear if the lighting on the two planes becomes too
similar. Also, clutter may appear closer than the desired edge to the control point,
causing clutter to be detected as the edge. The least-squares estimator used by
the original system maximises the probability of observing the data given that
errors are caused by random Gaussian noise. Since some edges are misdetected,
the noise is not Gaussian. The use of an M-estimator is proposed in [35]. Based
on the work of Tukey [143] and Huber [54, 55], these maximise the probability of
observing the data given a non-Gaussian distribution, in this case, one in which
large errors are more likely. In the original formulation, the precomputation of
the visibility of the control points reduces the robustness for tracking complex
objects. The object is also rendered in every frame using a BSP tree [111], and
control points are placed dynamically along the visible lines.

An alternative method proposed in [95], which uses a a RAPiD like system with a
robust estimator to compute affine motion of the model between two frames. The
affine motion is then used to compute an approximation to the full 3D motion.
The full pose is then refined by taking into account the direction of the image
gradient. Specifically, |∇I·n̂|

‖∇I‖
is computed for every control point, and the pose is

adjusted to minimise the sum of these. Since n̂ is the predicted edge orientation,

77

4. EDGE BASED TRACKING

A B

CD

Figure 4.1: A RAPiD like edge tracker in operation. (A) A new frame arrives.
(B) The previous pose is used to predict where the model and control points
(green) should appear in the image. (C) Edge normal searches are performed
from the control points to find the closest strong edge. (D) The pose of the
model is updated to minimise the length of the edge normal searches.

ideally ∇I should be orthogonal to this. This method therefore favours positions
where edges are both strong and in the correct direction.

However, there are problems with the RAPiD approach. As the amount of in-
terframe motion allowed increases, the edge-normal search distances must also
increase. After a point, the edge searches become increasingly likely to detect an
incorrect edge before the correct one, and this puts limits on the robustness. A
solution to this is presented in [72], where gyroscopes are used to measure angu-
lar velocity directly. This is then used to give a good prediction of the pose to
make tracking more robust. To improve matters further, the gyroscopes are used
to predict the amount of motion blur in the image, and this is used to create
a matched filter for blurred edges, which substantially improves the robustness
of the edge detection and hence tracking. A system [73] has more recently been
proposed which replaces the physical gyroscopes with a purely visual system.

The RAPiD style approaches described so far make the assumption that the mea-

78

implicit/./edgetracker/tracker.eps

4.2 Previous work

surements are independent. This is often not the case; a common case of bad
measurements occurs when the contrast of an edge is too low. As a result, all
measurements on that edge will be incorrect. Furthermore, if there is a nearby
edge present, then the incorrect edge measurements will all be strongly corre-
lated as well. This problem is tackled in [3]. The model is first split up into
primitives with a known mathematical model (for instance line segments and
conics). A sufficient number of control points are placed on each primitive to
over-determine its parameters, and the parameters of each primitive are com-
puted using RANSAC [36]. If a primitive has too little support, it is rejected.
The pose of the object is then computed from all the primitives. Each primitive
deleted in turn and the pose is recomputed. If the removal of a primitive results
in a large drop in residual error, then the primitive is identified as mismeasured.
The quality of primitives varies over time, so a decaying average of the frequency
of correctness is kept for each primitive as a measure of confidence. The pose is
then computed from all the good primitives, weighted by the confidence.

In [67], the primitives are fitted using MLESAC [140], but instead of keeping the
best fit, all fitted edges (whether ‘good’ or ‘bad’) are kept, along with their scores.
This enables the system to represent a multimodal probability distribution for the
parameters of the edges. Edges are then selected in the next stage of RANSAC,
with the probability of selection being guided [139] by the score. Groups of three
of edges are chosen and the pose is computed from these. As an extra refinement,
a texture based edge detector [128] is used which generalises the definition of an
edge from a change in intensity to a change in pixel distributions from one side
of the edge to another.

The texture edge detector is further extended in [129], by taking into account the
correlated nature of edges. The edge detector produces a probability of the edge
transition occurring for every pixel tested in the scanline. These are then linked
across scanlines using a Hidden Markov Model, and a Viterbi algorithm is used
to compute the most probable location of the edge.

As stated previously, the RAPiD style approaches need a good prior, otherwise
correspondence is difficult. Therefore, another approach to edge tracking detects
all edges first and attempts to fit the model to them afterwards. This is the
approach adopted in [87]. First, straight line segments are extracted from the
image using Marr-Hildreth [96] edge detection (hardware accelerated for speed)
followed by chaining and straight segment extraction. The probability of each ex-
tracted segment belonging to each model segment is computed using the distance,
orientation and model parameter covariance. The probabilities are then used to
guide a search to attempt to match extracted segments to the line segments in

79

4. EDGE BASED TRACKING

the model. The model pose is computed from the chosen line segments and if the
residual error is small enough, then the search is terminated.

In [78], straight edge segments are extracted. The Mahalanobis distance between
the model edge segment properties (length, position and orientation) and image
edge segment properties are computed using the model uncertainty and image
edge uncertainty for the weighting. A model edge is matched to the closest image
edge measured by Mahalanobis distance. The pose is optimised and correspon-
dences are recomputed. The whole process is iterated.

The system presented in [68] combines partitioning with the whole image ap-
proach. First, edgels are extracted in the whole image, using a modified version of
the texture based edge detector which allows for multiple edge transitions. Mea-
surements (model edges) are clustered into approximately rank-deficient clusters.
These are ones where certain camera motions do not affect the appearance. For
example, distant horizontal lines are affected by only by roll and pitch, but not
by yaw and translation. Consequently, this cluster has only two (instead of six)
degrees of freedom. As in RANSAC, a small number of edgels can be used to
estimate possible values for the degrees of freedom, but since the dimensionality
is greatly reduced, all combinations (as opposed to a random sampling) can be
used. This gives a set of hypotheses for each cluster. Although one edge looks
much like another, this does not apply to groups of edges, so correspondence
is much easier to determine: typically clusters tend to contain only one or two
plausible hypotheses. This approach allows the system to deal with large image
motion, significant occlusion and very poor quality videos.

A thorough survey of 3D tracking (including edge based tracking) is given in [81].

4.2.1 Modelling and tracking of curved surfaces

The techniques described in the previous section deal largely with polyhedral
objects. While tracking curved objects may be similar in principle, it poses
some additional difficulties. Modelling arbitrary curved surfaces is more difficult
than modelling arbitrary collections of planes. Furthermore, there may be fewer
features on curved surfaces. Consider the case of a polyhedral surface where two
planes meet at different angles. As long as the lighting is not uniform, there will
be an image edge created, even if the surfaces have the same albedo. Curved
surfaces do not necessarily have these features. In fact, the only feature that is
always present on a curved surface is the apparent contour.

80

4.2 Previous work

Figure 4.2: Dove of Peace by Pablo Picasso.

Apparent contours are therefore very important image features for curved sur-
faces. The apparent contour is defined as the points in the image where the
viewing ray is tangent to the surface being viewed. This is broadly speaking the
outline of the object. The apparent contour contains a large amount of infor-
mation about the object as illustrated by the picture shown in Figure 4.2. This
drawing shows only (with the exception of the eye) the apparent contour of the
dove, but the object being depicted and its pose are clear. As well as having a
high information content, there is another reason that makes the apparent contour
the most important image feature of curved surfaces. There is in fact sufficient
information present in the apparent contour of a curved surface to determine the
surface shape and camera motion purely by looking at the deformations of the
contour.

In [21] the deformation of apparent contours is used to determine the structure
of curved objects under known camera motion. The method introduces and uses
a formalism, namely the epipolar parametrisation. This defines corresponding
points of two apparent contours in nearby views as the point where the con-
tours intersect the epipolar plane defined by the two views. This can be used
to parametrise a point on the contour with time as the camera position changes.
A single view of the apparent contours give the direction of the surface nor-
mal. Two close views from known positions can be used to calculate the image
speed of a point on the apparent contour, which gives the depth of the surface.
This information can then be used to deduce the curvature of the surface. This
epipolar parametrisation can fail at two points, cusps and frontier points (see
Section 4.4.2.2 and [23]). The problem with cusps is solved in [22], by forming a

81

implicit/./picasso.eps

4. EDGE BASED TRACKING

different parametrisation of cusps, the cusp locus. The motion of the cusps with
time gives a different set of formulae to the epipolar parametrisation for the depth
and curvature of the surface. The frontier points, on the other hand, have been
put to other use in solving the structure and motion problem. A method for find-
ing the motion of a camera by looking at frontier points is described in [20]. Given
two views, a frontier point is a point where the epipolar plane is at a tangent to
the surface. In both views, the apparent contour at this point is stationary with
respect to to the normal of the epipolar line. The projection of a frontier point
therefore completely defines an epipolar line since it gives a point on the line and
the angle of the line. Two frontier points give the epipoles (intersection of the
epipolar lines) in both views, and therefore the motion between the two views.
The situation is not quite as simple as it appears, since the epipolar geometry is
needed to define the frontier points. A guided search, followed by optimisation,
is then used to find the camera motion. Once the camera motion is known, the
surface shape can be found. However, [23] notes that in practice, more features
than just the apparent contour would be used for determining camera motion.

Although this technique is appealing because it does not require a model, much
greater robustness can be achieved if a model is used [67]. One way to model
curved surfaces is to approximate the curved surface as a polygonal mesh. The
surface can be represented directly as a polygonal mesh [86], or a technique such
as marching cubes [85] can be used to turn an arbitrary surface into a polyhedral
mesh. Once the surface has been approximated in this way, it can be tracked as
if it were a polyhedral object. Other techniques centre around using segments of
curved primitives for which the apparent contour can be easily computed. For
example ellipsoids [18], truncated quadrics [34, 135], tapered superquadrics [39],
spheres and truncated cones [28] have been used.

4.2.2 Implicit surfaces

A different approach is to use simple primitives that can be easily combined to
make arbitrary shapes. Implicit surfaces are defined as the isosurface of a scalar
function in R3. Primitive implicit shapes can be smoothly combined by summing
their functions. There are several common kinds of primitives. Radial basis func-
tions (RBFs) are widely used and are attractive from a modelling point of view
since they can model smooth surfaces of arbitrary complexity and techniques ex-
ist [42] for fitting them to known 3-D data. The basis for these techniques involves
fixing the centres of the RBFs and then formulating a set of linear equations in
the RBF weightings which can be solved using numerical linear algebra methods.

82

4.2 Previous work

Metaballs1 (Gaussians in R3) are another commonly used primitive. Radially
symmetric Metaballs are discussed extensively in [12]. This work includes a rapid
surface rendering algorithm and notes a useful property of Gaussians, namely that
they decay very quickly to an insignificant value which allows many calculations
to be avoided, increasing efficiency. Exponents other than two are used to make
hyper-ellipsoids in order to more easily model a wider variety of shapes. These
other shapes require modifications to the rapid rendering techniques, since those
techniques rely in part on spherical Gaussians being used. These are extended in
a non-isotropic manner [151] to a class of shape known as ‘Soft Objects’, by using
field sources as the centres of the RBF, as opposed to point sources. This allows
much more accurate modelling of objects such as flat surfaces and cylinders than
Metaballs. Basis functions other than exponentials have also been proposed.
These mostly involve piecewise polynomial approximations of an exponential.
The approximations are designed to reach zero with a zero gradient, at which
point they are truncated. These are often more computationally efficient since
the polynomial is faster to evaluate, and the range of influence is clearly defined.
A summary of implicit surfaces for modelling is given in [99]. Since the surfaces
are not defined explicitly, it can be computationally slow to locate them.

The problem of apparent contour calculation being inefficient has been tackled
by [134]. The technique first preprocesses the model, restricting the state space
of the tracking system to reduce the number of vastly different apparent contours
allowed. Contours are considered different if the structure of the contours with
intersections (which appear as T-junctions) is different. The tracker is then used
to predict the pose and hence contour type. For small viewpoint changes, the
shape of the contour is approximated by combining the most recent contour and
the future contour. Certain applications are particularly unsuitable for prepro-
cessing of the shape, especially high dimensional systems (such as jointed models)
where the number of states that require preprocessing becomes very large. Im-
plicit surfaces are used for off-line tracking in [113, 114], where points on the
silhouette (part of the apparent contour) are found by casting a ray out from the
camera.

Once the surface can be rendered, then the object can be tracked. For instance
in [34], the surface consists of truncated quadrics and is therefore easy to render
since quadrics project to conic curves. The object is tracked using a relatively
standard technique.

A thorough mathematical analysis of the properties of curved surfaces is given

1Not to be confused with meatballs.

83

4. EDGE BASED TRACKING

in [23], [74] and [41]. An analysis of apparent contours of implicit shapes under
orthographic projection is given in [148].

4.3 The edge based tracking system in detail

The edge based tracking system is the same as the system presented in [35], with
the exception of the technique used to measure edge strength (described below).
Control points are placed every n pixels along the apparent contour. The high
speed rendering techniques required to do this are the subject of the rest of this
chapter. The camera frame is denoted C.

A 3D control point in the coordinate frame of the model X = [xM, yM, zM, 1]T

projects to x = P(X). The edge direction at X is T̂, which projects (into the
idealised camera) to direction t̂. The normal to the edge in the image is therefore:

n̂′ = Jc|P (X)

[
0 1
−1 0

]
t̂. (4.1)

The differential of the edge normal motion with respect to the motion parameters
is:

Jn = n̂′ Jc|P (X) Jp, (4.2)

which is a 6× 1 Jacobian.

Edge strength is given by the intensity normalised gradient: |in−in+1|
1+in+in+1

, where in
and in+1 are adjacent pixels. Inspiration for this is taken from the Self Quo-
tient Image [49] which increases the contrast of edges in dark regions. Edge
normal searches are performed at an angle quantised to the nearest 45◦, and the
closest edge where the strength is above a threshold is considered to be the cor-
respondence. The edge normal distance is, of course n̂′ · d, where d is the vector
between the control point and its correspondence. The update to the pose of the
edge tracker is computed from the Jacobian and the edge normal distance, by
reweighted least squares (using regularised Gauss-Newton).

The entire edge tracking system is repeated several times for each frame. On each
repetition, correspondence is recomputed and the model is relinearised. Also, on
each iteration, the search length is reduced. A large search distance is required
to deal with large prediction errors, but means that the system is more likely to
detect erroneous edges. Reducing the search length reduces the effect of outliers

84

4.4 Rapid rendering of implicit surfaces

more as the position is refined more. It also leads to a large computational
saving over just altering the reweighting function, since a large proportion of the
computational effort goes into random access of pixels in the image.

4.4 Rapid rendering of implicit surfaces

Rendering is the process of finding which features of interest are visible and which
are not. This is used to place control points on the visible part of the apparent
contour. This section presents a rapid system for finding the apparent contour
of the object and a system for rapid full surface rendering. For a large class of
implicit functions, such as quadrics, the surface and its apparent contours can be
computed analytically. However, in the general case, this cannot be done, and
this section presents numerical techniques for rendering the surfaces. Section 4.4.1
presents the necessary theory of implicit surfaces. Section 4.4.2 presents the the-
ory behind determining the visibility of the apparent contour. The mathematics
described is then applied in Section 4.5, which details and compares techniques
for calculating the apparent contour and determining its visibility. Section 4.4.3
then extends this theory from the apparent contours to the surface as a whole.

4.4.1 Calculating the apparent contour

A 3D shape S can be defined by a scalar function f of R3. A point x lies inside
S if f(x) > 0 and on the surface U of S if

f(x) = 0. (4.3)

If S is viewed from a camera centred at c, one of the most notable features is the
outline, or visible apparent contour of the shape. For a point p on this contour,
there is a corresponding point x on U which projects to p. A ray back projected
from p will be at a tangent to U at x, so

(x− c) · ∇f(x) = 0 (4.4)

(since ∇f(x) is normal to the surface). The points on U satisfying this equation
define the contour generators, which are curves in R3. The projection of this
curve by the camera at c is the apparent contour. Some parts of it are occluded
by S and it is the visible parts which make up the visible apparent contour.

85

4. EDGE BASED TRACKING

Equations 4.3 and 4.4 each provide one constraint. Combining these gives a one
dimensional set of solutions which describe the contour generators. To solve the
equation for x, the the contour generator is first parameterised with the variable
t, such that x = x(t). Differentiating Equation 4.3 with respect to t gives

x′ · ∇f(x) = 0. (4.5)

Differentiating Equation 4.4 with respect to t gives:

x′ · ∇f(x) + (x− c) ·
(
H[f(x)]x′

)
= 0 (4.6)

where H is the Hessian operator. Substituting in Equation 4.5 and writing
H(x) = H[f(x)] gives

(x− c) · (H(x)x′) = 0, (4.7)

Using the notation from Cipolla and Giblin [23], in general:

II(a, r′) = −a · ñ′

‖ñ‖ , (4.8)

where II is the second fundamental form, a is a vector tangent to the surface, r(t)
is a curve over the surface and ñ is the surface normal. Substituting (x− c) for
a, x(t) for r(t) and ∇f(x) for ñ and using the result from Equation 4.7 gives:

II(x− c,x′) = 0. (4.9)

In other words, the apparent contour is conjugate to the viewing ray. Taking
Equation 4.7 and transposing gives:

x′ · (H(x) (x− c)) = 0 (4.10)

since the Hessian matrix is symmetric. Equations 4.5 and 4.10 give orthogonality
constraints on x′, so x′ can be defined as

x′ = α
(
H(x) (x− c)

)
×∇f(x) , (4.11)

with α giving an arbitrary scale.

The contour generator is now described by a starting point, x(0) and a first
order differential equation. This can be solved using standard ODE integration
techniques and an example is given in Figure 4.3. The visible apparent contour
in Figure 4.3 B looks quite simple, but the contour generator corresponding to
this is quite elaborate (C, D).

Equation 4.11 defines x′ to be a vector field over all x, not just on the apparent
contours. Providing it does not become singular [148], this field has no diver-
gence (see Appendix C) so it therefore defines closed contours. All the contour
generators defined by Equation 4.11 and a suitable starting point are therefore
closed.

86

4.4 Rapid rendering of implicit surfaces

D
A

B

C

Figure 4.3: (A) A spoked wheel. (B) The visible apparent contour viewed from
in front. (C) The apparent contour. (D) The contour generator from C, viewed
from a different angle.

4.4.2 Determining the visibility of the apparent contour

Equation 4.11 yields a set of closed contours. Not all parts of these contours will
necessarily be visible to the camera due to occlusion by S. A näıve solution to
this would be to search along the ray from the camera to each point on each
contour generator, testing for f(x) > 0, but this is very inefficient.

In this section a technique is presented which allows the visibility to be determined
more rapidly; an implementation of these techniques resulted in a thousandfold
speed increase. This technique is based on the occlusion depth of points on the
contour generator.

Occlusion depth:The occlusion depth of a point is the number of times a ray
from the camera to the point intersects an opaque surface.

In other words, this is the number of times the ray intersects U . This is a powerful
approach because the occlusion depth can only change at easily identified points
as each contour is traversed. The occlusion depth and hence the visibility of
the contour between these points is constant. As will be shown, the visibility of
the least occluded part of each contour can then be determined by propagating
information between the contours.

Figure 4.4 A shows a sphere occluding part of a torus and the image of the con-
tours generated by Equation 4.11 is shown in Figure 4.4 B. The occlusion depth
can only change in two ways. The most obvious occurs when the contour becomes
occluded by another part of S, for example the point labelled 1 in Figure 4.4 B.
This can easily be detected since it implies that the contours intersect. A less
obvious change in occlusion depth occurs due to a cusp in the apparent contour,

87

implicit/./renderpics/occludingcontour.eps

4. EDGE BASED TRACKING

2

1 1

A B C

Intersection

Cusp

Ray to
camera

Figure 4.4: A torus partially occluded by a sphere. (A) Rendered image. (B)
Apparent contour. (C) Contour generator of the torus rendered from a different
angle.

at which the visible contour ends [76], as shown in Figure 4.4 B, labelled 2. This
happens when the viewing ray is coincident with the contour generator [75]. This
is shown in Figure 4.4 C. Note that at a cusp, the contour generator is smooth
(it has continuous derivatives), even though the apparent contour is not.

4.4.2.1 Intersections

When two contours intersect in the image, the one with the generator furthest
from the camera becomes occluded by part of S. When one part of the contour
generator becomes occluded by another part of the shape, a ray from the camera
to the occluded part must pass in and out of the shape again, i.e. it intersects
U twice. At an intersection, therefore, the depth of the contour either increases
by two or decreases by two, depending on the shape of the surface at the fore-
most contour generator. In order to determine this, the number of intersections
between the ray and the foremost surface is calculated as the ray is moved along
the rearmost contour. To do this, the ray through the point x1 + λx′

2 can be
considered (where x1 is the point on the foremost surface and x′

2 is the tangent
of the rearmost contour).

Intersections between this ray and the foremost surface can then be represented
as:

f((1 + α) (x1 + λx′
2)) = 0, (4.12)

where α parametrises the position along the ray. Equation 4.12 can be solved
locally at x1 by performing a Taylor expansion up to second order terms. Since
the solution is local, α and λ are small, so terms in αλ can be ignored, leaving a
quadratic equation in α:

α2xT

1 Hx1 + 2αλx′T
2 Hx1 + λ2x′T

2 Hx′
2 + 2λx′

2 · ∇f(x) = 0, (4.13)

88

implicit/./renderpics/isect2.eps

4.4 Rapid rendering of implicit surfaces

where H = H(x1). The number of solutions for α is given by the sign of the
discriminant D of this equation. At λ = 0, D = 0, confirming that there is a
repeated solution, i.e. the ray just brushes U at x1. Differentiating D with respect
to λ gives:

d =
∂D

∂λ

∣∣∣∣
λ=0

= −
(
xT

1 Hx1

)
x′

2 · ∇f(x) . (4.14)

If this derivative is positive, then going in the direction of x′
2, D becomes positive,

so the ray intersects U twice near x1. That is if the derivative is positive, then the
depth of the rearmost contour increases by two, otherwise the depth decreases by
two.

4.4.2.2 Cusps

A point x on the contour generator can be classified as belonging to inner surface

or outer surface. If at x the ray to the camera dives into S then x is on an inner
surface. If the ray moves away from S then x is on an outer surface. A ray from a
point on an inner surface to the camera has an odd number of intersections with
U , so the point has an odd numbered occlusion depth. Since its occlusion depth
is nonzero, the point is not visible.

When a contour generator goes from being on an outer surface to being on an
inner surface, its depth changes by one. At the point where this happens, the
contour generator tangent is parallel to the ray to x as shown in Figure 4.4 C.
Motion along the generator at this point results in no motion along the apparent
contour in the image, so this appears as a cusp of the apparent contour. At a
cusp, if the tangent of the contour generator is pointing away from the camera,
the occlusion depth increases by one, otherwise it decreases by one. Essentially,
moving away from the camera, the occlusion depth can only increase, and moving
toward the camera can only cause a decrease.

4.4.2.3 Propagating depth information between contours

Tests for intersections give the relative change in depth of the contour, but cannot
determine the minimum overall depth (i.e. whether the least occluded part of the
contour can be seen). This can be resolved by propagating information between
contours. Rule 1 is an invariant property of the occlusion depths at intersections.

89

4. EDGE BASED TRACKING

A

B

Figure 4.5: A cup and ball viewed from two different sides (left) and the apparent
contours (right). In both cases, the apparent contours are identical. When viewed
from A, the ball (and hence the inner apparent contour) is visible, but when
viewed from B, the ball (and hence the inner apparent) contour is occluded.
Note that even though in B the inner contour is occluded, every point on the
inner contour is closer to the camera than every point on the outer contour.

Rule 1 If contour A intersects contour B such that B becomes occluded, the
depth of B just before the occlusion must be greater than or equal to the depth of
A at the occlusion.

Application of Rule 1 does not necessarily completely determine the visibility of
all contours. If after application of this rule a contour contains a segment at depth
0 (and hence is potentially visible) but is completely contained within another
contour then it may still be occluded. In this case a search must be performed to
find its depth. The camera can be searched to find if the ray intersects U , rather
than to find the number of intersections since this is sufficient for determining
visibility. The second of these provides more information, but is slower. Search
techniques are discussed in Section 4.4.3. Rule 1 must be reapplied if the segment
is found to be occluded, since it is an invariant property of the system. After
all segments requiring a search have been tested, then the visibility of every part
of the apparent contour is known. An example of two sets of identical contours
having different visibility is shown in Figure 4.5.

90

implicit/./cup/cup-fig.eps

4.5 Rapid rendering of the visible apparent contour

4.4.3 Determining Surface Visibility

Consider a scene consisting of a shape, S and an arbitrary contour, C. As C
snakes through the world, it can become occluded in one of two ways. Either
the contour can pass through U , in which case it becomes hidden because it is
inside S, or it passes behind S. The latter of these can only happen where the
projection of this curve intersects the apparent contour. If, instead of an arbitrary
contour, C is restricted so that is does not pass through S, then the depth of it
can be determined purely by using the rules described in Section 4.4.2, and this
information can to some extent be propagated. If C is further restricted so that
it can only lie on U , then it is known that anything directly behind C must also
be behind S, so it must be occluded. As a result, C behaves in exactly the same
way as the apparent contours. Surface patches can be created by laying many
contours across the surface next to each other. Once the contour generators have
been calculated, the surface patch contours can be added into the list of contours
and the occlusion test can proceed as described in Section 4.4.2.

4.5 Rapid rendering of the visible apparent con-

tour

Equation 4.11 defines the contour generator for any implicit surface. In the work
so far, a sum of Gaussians in R3 are used to define the shape. The implicit
function used has the form:

gi(x) = βie
(x−µi)

TCi(x−µi) (4.15)

f(x) =
∑

i

gi(x)− 1

2
(4.16)

where Ci is the inverse covariance matrix for Gaussian i and is a real symmetric
matrix. The gradient and Hessian are given by:

∇f(x) = −
∑

i

Ci (x− µi) gi(x) (4.17)

H(x) =
∑

i

(
2Ci (x− µi)

T (x− µi)Ci −Ci

)
gi(x). (4.18)

Since x′ is only defined up to an arbitrary scale, it has been set to be of unit
length. The curve can be integrated using ODE integration techniques. which
are discussed in section 4.5.1.

91

4. EDGE BASED TRACKING

A B C

Figure 4.6: A set of contours from the spoked wheel in Figure 4.3. (A) The
correct contour. (B) An incorrect solution of the contour caused by a large step
size. (C) Contour B from a different viewpoint.

4.5.1 Solving the differential equation

4.5.1.1 Fixed step size solver

Equation 4.11 describes a differential equation, and this can be integrated using a
standard 4th order Runge-Kutta solver (finding x(0) is discussed in Section 4.5.2).
An attempt was made to improve the solution by introducing a term that moves
the solution back onto the apparent contour after each step. This technique
was rejected since the choice of the step size is dominated by the need to avoid
missing features in the contour, as opposed to getting a sufficiently accurate
solution, so the extra accuracy added by the correction effectively adds nothing
but computational effort.

The step size must be smaller than the feature size of the contour, otherwise the
solver can skip over small, important features (such as points where the contour is
nearly singular), and can jump onto another contour. An example of this is shown
in Figure 4.6. The contour plotted in Figures 4.6 B and C has been calculated
with a solver that has the step size set to be too large. In the solution of one
of the contours, the solver jumps onto another contour, collecting a substantial
error. It then loops around the other contours, jumping from one to another until
eventually it happens to jump back onto the starting contour and end up where
it started, terminating the solution.

92

implicit/./rapidpics/b0rk3d-rk4.eps

4.5 Rapid rendering of the visible apparent contour

The 4th order Runge-Kutta method therefore suffers from two main problems.
The first is that the step size has to be chosen at some point. This cannot be
deduced easily from the model, so a conservative approach needs to be taken; the
chosen step size must be smaller than necessary to make sure that the solution
is unlikely to fail (the solution will always fail if the contour becomes singular).
The other problem is that the smallest step size is only really needed at the small
features and it is inefficient to take many very small steps where a few large ones
would suffice.

The possible solutions [16, 30, 136] are either to make the steps more intelligent
(like the Bulirsch-Stoer solvers), so that they do not miss the small features, or to
choose the step size based on the local properties of the shape (like Runge-Kutta-
Fehlberg solvers). The latter strategy has been investigated and is discussed in
Section 4.5.1.2.

4.5.1.2 Variable step size solver

The idea behind a variable step size solver is to choose the step size in order to
keep the error within certain bounds. Therefore, the error needs to be estimated,
and a strategy for varying the step size is required. The algorithm used involves
taking a 4th and 5th order Runge-Kutta step from the same point. The 5th order
step is considered to be closer to the ground truth than the 4th order step, and is
therefore used to estimate the error of the 4th order step. By carefully choosing
the way in which one takes the steps, the same function evaluations can be used
for both of the steps. This is Fehlberg’s method [115]. Given some function
where:

dy

dx
= f(x, y) , (4.19)

the formula for the 5th order step of length h is:

ki = hf

(
xn + ai, yn +

i−1∑

j=1

bijkj

)
(4.20)

yn+1 = yn +
6∑

i=1

kici + O
(
h6
)
, (4.21)

and the formula for the 4th order step is:

ỹn+1 = yn +
6∑

i=1

kic̃i + O
(
h5
)
. (4.22)

93

4. EDGE BASED TRACKING

biji ai
j=1 2 3 4 5

ci c̃i

1 37
378

2825
27648

2 1
5

1
5

0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10

− 9
10

6
5

125
594

13525
55296

5 1 −11
64

5
2
−70

27
35
27

0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 4.1: The Cash-Karp [16] parameters for the Runge-Kutta-Fehlberg algo-
rithm.

Algorithm 3 Estimating the optimum step size

given hn, yn, ε
do

calculate yn+1, ε, using hn as the step size
estimate a better hn based on ε and ε

until ε < ε
hn+1 = hn

Therefore, the estimated error for the 4th order step is:

ε = yn+1 − ỹn+1 =
6∑

i=1

(ci − c̃i)ki. (4.23)

The parameters used for the solver are the Cash-Karp parameters [16] (see Ta-
ble 4.1) which have superseded Fehlberg’s parameters in general usage.

If the maximum allowed error per step is ε, then Algorithm 3 can be used for
taking a step of a suitable size. The step is only recalculated if ε is larger than ε,
since the main problem with ε being too small is a lack of efficiency and this is
not improved by recalculating yn+1 with a larger step. Once yn+1 is calculated,
the optimum step size for that step can be estimated. The assumption is that
the optimum step size for step n is approximately the same as the optimum step
size for step n + 1, so hn is used as the first guess of hn+1.

94

4.5 Rapid rendering of the visible apparent contour

The error ε is approximately of O(h5) with the step size, so the optimum step
size, h could be calculated as:

h = h
5
√(

ε

ε

)
. (4.24)

However, if the error per step is O(hn) then the global error is O(hn−1), since the
number of errors introduced is O

(
1
h

)
. The global error can appear to be better

if the errors tend to cancel out as opposed to add up during the whole solution
of the ODE. Since it is not clear exactly how the error varies with h, several
strategies were implemented and tested. ε is taken to be the Euclidean distance
between the two solutions. The different strategies are:

1.

h =

{
sh 5
√

ε/ε ε > ε

sh 4
√

ε/ε otherwise
. (4.25)

This is the conservative approach suggested by [115]; if the error is small,
then increase the step size by the smaller amount, otherwise decrease it by
the larger amount. A scaling factor s of slightly less than unity has been
introduced because ε is usually an overestimate.

2.
h = sh 5

√
ε/ε. (4.26)

3.
h = sh 4

√
ε/ε. (4.27)

4.

h =

{
h/s ε > ε

hs otherwise
. (4.28)

This approach is based loosely on the earlier step-doubling techniques.

By finding the average optimum s over a number of contours and finding the total
number of steps (including rejected ones) required, the relative merit of the four
techniques can be tested. Methods 1–3 vary by less than 2% in the total number
of steps required. Method 1 comes out slightly better (though this result could
well be within measurement error), with an optimum of s = 0.853. Method 4 is
atrocious by comparison, requiring about 1.6 times as many steps.

95

4. EDGE BASED TRACKING

Locus of points within

point
one step of the current

Segment of contour solved with
variable step size solver

Apparent contour

Current point

Start point

Figure 4.7: With a variable step sized solution, a non terminal point can pass
within one step of the initial point.

4.5.1.3 Termination strategies

The discussion about solving the ODE to find the contour generators has skipped
over a point, namely how the solution of the ODE terminates. A common termi-
nation strategy for the solution of ODEs is to run the solver for a fixed distance,
i.e. until x reaches a certain value in the system described in Equation 4.19.
Another common strategy is to run the solver until the solution converges (if in-
deed the ODE does converge). The ODE describing the contour generator is not
amenable to either strategy. Firstly, the solver cannot be run for a fixed distance
because the length of the generator is not known. Second, the contour generator
is a closed loop, so the solution does not converge. Instead, it oscillates where
the period of oscillation is the length of the generator.

The strategy employed for the fixed-step solver is to terminate the solution when
the solution comes within a small multiple of the step size of the starting point.
This is guaranteed to work because the step size must be smaller than the feature
size, so if the solution is within approximately one step of the start, then it must
be back at the start as opposed to near it but on a different feature. This does not
work for a variable step sized solver. Figure 4.7 shows the solution of the variable
step sized solver around a long, thin feature. After getting approximately one
third of the way around, the current point is within one step of the end. Clearly
the solution should not terminate here. There are several criteria which can be
enumerated that a point, x, must obey before it can be considered the end of the
solution, namely:

1. x must be close to x(0)

96

implicit/./var-step.eps

4.5 Rapid rendering of the visible apparent contour

2. The contour at x must be aligned with the contour at x(0). That is:

(a) The contours must be pointing in the same direction, i.e. x′ ≈ x′(0)

(b) A step from the current point of the right length must land very close
to the starting point.

It is possible to meet all but one of the conditions at a point which is not the
end of the curve. These tests have been implemented and have led to significant
improvements in efficiency. However, there are now four parameters which need
tuning, instead of one for the fixed step sized solver.

4.5.2 Finding contours

In order to calculate contour generators, suitable starting points need to be found.
Exactly one starting point on each contour needs to be found. The method for
finding points is split into two stages, the first of which is performed offline. The
offline stage scatters a number of points (typically 500–2000) over the surface
of the object. Since the position of the surface is not known, this is done by
scattering points randomly over the surface of the individual Gaussians and then
moving the points to the surface using Newton’s method. Each Gaussian has
approximately the same number of points scattered over it. Broadly speaking,
a high density of Gaussians corresponds to a high density of surface features, so
this method (as opposed to scattering points evenly over the surface) ensures that
there are more points where there is more detail.

At run time, candidate points on the surface close to the generators are chosen by
selecting points where the surface is nearly parallel to the viewing ray, typically
within 5◦. An iteration scheme involving a Newton-Raphson step along the view-
ing ray, followed by a step toward the surface is used to move the points onto a
contour generator. Points close to existing contour generators are then rejected.
The proximity test is performed using the rapid search techniques described in
Section 4.5.3.

4.5.3 Fast contour search techniques

In the process of rendering the visible contour, there are three operations which
need to be performed rapidly on the contours and contour generators. These are

97

4. EDGE BASED TRACKING

Algorithm 4 Fast proximity detection.

bool Proximity(Tree node T, Point p, Distance d)
if(p is within d if the bounding box of T)

if(T is a leaf node AND p is within d of the line segment in T)
return true

else

return Proximity(T.left, p, d) OR Proximity(T.right, p, d)
return false

end

Algorithm 5 Fast piecewise linear contour intersection.

form an empty list of pairs of line segments, L

Intersect(Tree Node m, Tree Node n)
if(bounding boxes of m and n intersect)

if(m and n are leaf nodes)
if(the line segments in m and n intersect)

add (m, n) to L

else

call Intersect on all pairs of children
end

testing the proximity of a point to a contour generator, determining if a point is
inside a contour and finding all intersections between contours. The two and three
dimensional contours consist of a loop of connected line segments. The ends of
the line segments are at the points generated by integrating Equation 4.11. If the
step size needed for accurate integration is small, then the contours can consist
of a large number of line segments. As a result, a simplistic implementation of
the tests runs very slowly.

A fast method of performing these tests has been developed which makes use
of a balanced binary tree. The leaves of this tree contain a line segment and a
bounding box. For each node, a bounding box is computed that exactly contains
the bounding boxes of the child nodes. To determine if a point is near a contour,
Algorithm 4 is used. The worst case execution time is O(N), but the typical
running time is O(log N). Algorithm 5 is used to calculate intersections between
contours rapidly. The worst case execution time is O(N 2), since there can be at
most O(N 2) intersections, but the typical running time is O(log N). If a point is

98

4.6 Tracking

inside a polygon, then an infinite ray from that point will cross an odd number of
edge segments of that polygon. A similar algorithm is used to perform this test
in approximately logarithmic time.

Intersection of polygons is often performed using line-sweep based algorithms.
In the system described here, the algorithms described perform algorithmically
better. The slowest operation in the line-sweep algorithms is setting up the data
structure. This requires turning the polygons into a sorted list of line segments,
and as a result takes time of O(MN log N), where M is the number of contours
and N is the number of segments per contour. Calculating intersections between
all contours is then linear in the number of line segments, taking O(MN) time.
The algorithms presented here perform differently. The setup time is linear and
the time taken to compare a pair of contours is O(log N). However, all possible
pairs of contours have to be tested, so the time taken is O(M 2 log N). In all the
cases tested so far, N �M , so the tree based algorithms perform better. It should
be noted that the worst case performance for both algorithms is O((MN)2), since
there can be at most that many intersections.

4.6 Tracking

In order to track the object from an image, the derivatives of visible boundary
points (in the image) with respect to the motion parameters must be calculated.
As the camera moves, the boundary moves in the image. One component of this
motion is due to the motion of the contour generator relative to the camera. The
shape of the contour depends on the position of the camera, i.e. as the camera
moves, the contour slips across U . This is the second component of the image
motion.

The contour generator is by definition at a point where the surface is at a tangent
to the viewing ray. Any small motion across the surface will therefore be along
the viewing ray and will cause no image motion. More formally, x0 is a point on
the contour generator and x1 is the point on U which corresponds to x0 after a
small camera motion. There is a one parameter ambiguity in this correspondence.
There are a family of points on the apparent contour visible after a small motion
that could reasonable correspond to x0. The point x1 has to be defined. It is
this point correspondence that is used for tracking and it can be shown that with
this correspondence there is no image motion due to the contour slipping over
the surface. Correspondence is found by defining a correspondence plane. The

99

4. EDGE BASED TRACKING

plane is defined by the point (x0) in the first view. The corresponding point to
x0, that is x1 is defined to be where the contour from the second view intersects
this plane. The correspondence plane is described by the camera centre, c, the
initial point, x0 and the surface normal, ∇f(x0). The interpretation of this in
the image is that a point on the second contour lies normal to the edge at the
point on the first contour. The position of x1 can then be written as

x1 = x0 + a (x0 − c) + b (∇f(x0)) (4.29)

where a and b parametrise the position on this plane along the viewing ray and
normal to the surface. We also know that x1 must lie on U , i.e. f(x1) = 0, so

f(x0 + a (x0 − c) + b (∇f(x0))) = 0. (4.30)

Performing a Taylor series expansion of this up to first order terms gives

f(x0) +∇f(x0) (a (x0 − c) + b (∇f(x0))) = 0. (4.31)

Substituting Equation 4.3 and Equation 4.4 gives

b ||∇f(x0)||2 = 0 (4.32)

and therefore b = 0. Using this correspondence x0 corresponds to x1 where:

x1 = x0 + a(x0 − c). (4.33)

This shows that motion of x0 is only along a ray to a camera, and therefore pro-
duces no image motion of p. For small motions, the visual motion of the contour
generator is equivalent to the visual motion of a rigid wire frame. The shapes
are tracked using a standard technique [35]. This tracker works by linearising the
edge-normal image motion with respect to the six pose parameters, and therefore
uses the correspondence described above.

When there is a cusp in the image, it is possible for the motion of the con-
tour generator to lie outside the correspondence plane. When this happens, the
approximation of the motion is inaccurate, which would make tracking of cusps
inaccurate. This point has not been addressed because cusps are very weak image
features, as can be seen in Figure 4.8. Since they are so weak, they are not par-
ticularly useful features to track. Further, the robust optimiser removes problems
associated with any mismatching of edges which may occur at the cusps.

100

4.7 Conclusions

Figure 4.8: Cusps are very clear in the rendered outline of the torus (left), but
in practice they are very hard to localise in the image (right).

4.6.1 Results

The system was tested by tracking a simple object (a torus) and a more complex
object (a desk lamp). The torus can be seen in Figure 4.8. Figure 4.9 A is of a
rendered image of the lamp model. Figure 4.9 B–D show the lamp being tracked
in various orientations. The system was fast enough to track the incoming video
stream at frame rate (25 frames per second). The model of the lamp contains 13
primitives (143 parameters), and approximately 0.025s (on a Pentium processor
at 850 MHz) is required to calculate the visible apparent contour. The parameters
along with annotations are given in Appendix D. The model involves collections
of positive Gaussians with a scale of order unity for defining the geometry, and
Gaussians with very large negative scalings to cut out flat sides.

4.7 Conclusions

This section has presented a method for efficiently rendering smooth surfaces
described by an implicit function. The efficient rendering has arisen from a com-
bination of several items:

• A differential equation for tracing out the contour generators, which can be
integrated using standard, efficient techniques.

• A method of determining the the visibility of the apparent contours, based
on their intersections.

• A new family of algorithms able to rapidly compute intersections of 2D
contours and proximity to 3D contours. These are essential for efficiently
determining starting points of the differential equation integrator and in-
tersections for the visibility computation.

101

implicit/./trackpics/donuts.eps

4. EDGE BASED TRACKING

C D

A B

Figure 4.9: (A) the model of the lamp. (B)–(D) the lamp being tracked in various
poses.

102

implicit/./trackpics/lamps.eps

5. Sensor fusion

5.1 Introduction

The subject of this thesis is high performance (robust and efficient) tracking.
This section is about how the systems presented so far can be combined in to a
complete system which exhibits high performance. So far, two tracking systems
have been presented, a point based tracking system and an edge based tracking
system. These two tracking systems are complementary: the point based tracking
system is very robust to large, unpredictable camera motions but suffers from drift
and the point based tracking system is drift free but brittle (this will be discussed
in more detail in Section 5.3). Because of this, it is natural construct a system
to combine these in such a way that the point based tracking system makes the
system robust, and the edge based system bakes it drift free.

5.2 Previous work

In multi-cue tracking, several cues in the image are used (for instance edges and
points), by combining the measurements from multiple tracking systems. The
idea behind this is that the system can then cope with failures in the different
trackers.

Consider the case of combining two tracking systems. If the statistics of the
system are Gaussian, and the dynamics are linear, then the Kalman filter is
optimal [64]. This can be extended to nonlinear systems, with the two most
popular techniques being the EKF (Extended Kalman Filter)—which linearises
around the current point—and the UKF (Unscented Kalman Filter) [61], which

104

5.2 Previous work

passes enough points through the nonlinearities to measure the new variance
afterwards. This system is capable of dealing with certain kinds of failures. If
one of the trackers is weakly constrained along some eigenvector, the measurement
can still be accurate in the other dimensions (as long as regularisation is used in
the optimisation step), so it still provides useful information when added into the
Kalman filter. As long as the other tracking system constrains that dimension
(though other dimensions can be unconstrained). When the measurements are
added, the final pose will end up being well localised. This extends all the way to
one tracker providing no information at all. This is the approach used in [146] in
which point features and edges are combined. In [137], this is also combined with
colour blob based tracking, and this takes advantage of the filter being able to
use under constrained measurements, since the colour blob tracker only measures
the 2D image motion of the object centroid.

This does not take into account some of the different properties of the tracking
systems. In [46] multi-cue tracking is applied to the snake tracking problem.
Snakes suffer from the edge correspondence problem, so point based tracking is
performed before snake tracking to initialise the new position of the snake. This
helps correct one failure mode due to the lack of robustness of one tracker, but
no longer allows either of the trackers to fail. A system based on a large number
of trackers is presented in [141]. These range from coarse and inaccurate but
robust to highly accurate but brittle. Properties of the trackers and a finite state
machine are used to select which tracker is to be used.

Colour, pattern detection and stereo are combined in [26] to track people. The
trackers are combined robustly. If a high precision tracker is available, it is used,
otherwise lower precision trackers are combined. The high precision trackers are
tuned such that false negatives are greatly preferred to false positives. In other
words, the system is designed to cope with missing rather than false information.

If the measurements do not have Gaussian noise, then the Kalman filter is not
suitable, nor is any unimodal filter: multiplying the prior and measurement PDFs
(probability density functions) will inevitably lead to multiple modes in the pos-
terior distribution. This happens when a tracker can fail completely—it will
provide accurate data most of the time, but once in a while, the answer will be
wildly incorrect, even when there is plenty of data. An example of this is given
in Figure 5.1. In this case, the prior is Gaussian, but the measurement is not
(the measurement is represented as a mixture model, one component representing
good measurements, the other representing bad ones), and the resulting posterior
is multimodal. In other words, if the measurement was good, then the ground
truth is probably near one mode, otherwise it is probably near the other.

105

5. SENSOR FUSION

C

D
E

A
B

Figure 5.1: Left: model in the correct position. Right: edge tracking fails because
model edges (A) and (B) lock onto image edge (B) and model edges (C) and (E)
lock onto image edge (D).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.005

0.01

0.015

x

p(
x)

Gaussian prior
GMM likelihood
Multimodal posterior

Figure 5.2: A 1D example of a Gaussian prior combining with a mixture model
likelihood to produce a multimodal posterior.

An example of this is given in Figure 5.2.

CONDENSATION (CONditional DENSity propagATION) [56] is a tracking sys-
tem which uses a multimodal representation. In each frame, the posterior is
represented by N points, each weighted with a probability (particles). In a new
frame, N new points are drawn randomly (taking the weighting into account)
from the old ones, and drift (to take into account dynamics) and random noise
are added to the particle positions. A measurement is taken at each particle to
determine the probability of correctness (the measurement does not include an

106

sensor_fusion/figs/bad_edges/when_edges_go_bad.eps
sensor_fusion/figs/multimodal/fig.eps

5.3 Sensor analysis

optimisation step). In this case, the model is a spline curve and is used to track
nonrigid objects in a video at frame rate. The particle propagation technique is
also known as particle filtering [45].

This technique does not scale well with the number of dimensions; the number
of particles required to adequately represent the distribution increases rapidly
with the dimensionality. This is demonstrated in [31], where particle filtering is
applied to human body tracking (29 DOF). Even with 40,000 particles (four sec-
onds of video taking 30 hours to process), tracking is not successful. They propose
annealed particle filtering to solve this problem. In this system, a broad measure-
ment function is used to compute the particle weightings, effectively smoothing
out the space, so far fewer particles are needed. Then the measurement function
is narrowed, the system is resampled, and weightings are recomputed. This is
repeated several times, allowing the system to converge on the global maximum
with far fewer particles.

In some cases, partitioned sampling [93] can be used. In this case, two objects
are being tracked simultaneously, and they can be tracked nearly independently.
So, instead of tracking the pair together in a high dimensional space, they are
tracked independently in the two low dimensional spaces, after which, the results
can be combined. This is suitable for articulated objects and is applied to hand
tracking in [94].

In particle filtering, measurements are used to compute the probability of the par-
ticles, and in Kalman filtering, the measurements are combined with the prior.
These are combined in the unscented particle filter [100], where particle positions
are updated by observations using a UKF. This would be useful in tracking situ-
ations where a tracker can be used which has a large radius of convergence: only
one particle has to exist in the well for tracking to be successful. A paramet-
ric system which is evolved over time by tracking the modes of the distribution
is used in [17]. This applies to high dimensional tracking (human body) where
particle filtering is unsuitable.

5.3 Sensor analysis

Before attempting to combine these two approaches for pose estimation, it is first
necessary to look in more detail at the preconditions and postconditions for each
in order to understand the differences in statistical behaviour. A summary of
these is first presented in order to provide a basis for the discussion that follows.

107

5. SENSOR FUSION

Point based tracking

Preconditions
P
−
13D point cloud/model.

Postconditions
P

+
1Produces robust differential measurements. . .

P
+
2. . . with approximately Gaussian posterior.

P
+
3Posterior measurement covariance is inaccurate.

Edge based tracking

Preconditions
E
−
1Geometric 3D edge model.

E
−
2Accurate pose prior.

Postconditions
E

+
1Non-Gaussian posterior.

E
+
2Drift-free measurement.

5.3.1 Point features

Condition P
−
1 : In Section 2 it was argued that obtaining a static point cloud for

large scenes is infeasible, and not necessarily useful. As a result, it is necessary to
dynamically learn this model and this is achieved by back-projection onto a geo-
metric 3D surface model. Because there are no static features in this point cloud,
the tracker can only produce differential pose measurements (Condition P

+
1).

Condition P
+
2 arises because we can determine which point matches are correct

and which are not with high probability (see Section 2.5 and Section 2.5.1). The
measurement errors of the inliers are mostly due to pixel quantisation (we do
not use a sub-pixel feature detector—see Section 3.3) and so are independent.
The likelihood therefore approaches a Gaussian distribution by the central limit
theorem.

Condition P
+
3 : Although the measurement errors are independent, the errors

in the 3D point cloud are not. Points detected on unmodeled structural clutter
are back-projected onto the closest modelled plane, which is almost always fur-
ther from the camera than the clutter. This is simply because there are fewer
unmodelled windows than unmodelled solid objects. The result is that any errors
in the 3D point cloud may well be strongly correlated, and therefore it is found
that the covariance obtained from the point matches is inaccurate. As a result

108

5.3 Sensor analysis

−0.1 0 0.1
−0.02

−0.01

0

0.01

0.02

Motion (parameter 5)

E
rr

or
 in

 m
ot

io
n

(p
ar

am
et

er
 6

)

−0.1 −0.05 0 0.05 0.1
−0.2

−0.1

0

0.1

0.2

Error in motion (parameter 2)

E
rr

or
 in

 m
ot

io
n

(p
ar

am
et

er
 3

)

Figure 5.3: The errors between the point tracking posterior and the ground
truth are well modelled by uncorrelated statistics. To demonstrate this, the two
strongest correlations have been shown and even these are only weakly correlated.

the covariance must be modelled. Two models for the covariance are considered.
The first model is that the covariance, C, can be modelled as a function of the
motion, µ:

C = A + Bµµ
TBT (5.1)

This is tested by using data which is obtained from a sequence where the pose is
found by manual alignment in each frame. It is found that A is largely diagonal,
and B consists of only very small values. The data corresponding to the largest
off-diagonal element of A and the largest element of B is shown in Figure 5.3. The
second model considered assumes that the shape of the covariance obtained from
the data (see Section 2.5) is correct, but that it is over-saturated by a constant, k.
The most likely value of k maximises the log-likelihood of the data and is given
by:

k = argmin
k

(
−
∑

i

eT

i (kCi)
−1ei − ln

√
(2π)6|kCi|,

)
(5.2)

where Ci is the computed covariance for frame i and ei is the 6 DOF pose error
for frame i, obtained from the ground truth data. It is found that k ≈ 7200.

109

sensor_fusion/figs/learn_cov/fig.eps

5. SENSOR FUSION

A

A

A

B

C
B

Figure 5.4: An example of edge based tracking failing when the initial position is
not sufficiently close to the correct position. Some model edges (A) correspond
to the correct image edges. Other model edges (B) have an incorrect image edge
closer than the correct one. The worst model edges (C) do not have the correct
image edge anywhere in the direction of the normal. This particular configuration
of incorrect correspondences causes the tracker to converge on the position shown
rather than the correct position.

5.3.2 Edge tracking

Condition E
−
1 : In order to perform edge tracking a 3D edge model of the object

to be tracked. This is the model onto which features are projected for Condi-

tion P
−
1 . The model is created by hand. Edge features are invariant to lighting

and perspective changes, hence the model can remain static. Because this model
is static, the measurements obtained will be drift-free (Condition E

+
2). Highly

invariant features are not discriminative, so in order to avoid incorrect edge corre-
spondences, a strong prior image edge position and hence model pose is required
(Condition E

−
2). Figure 5.4 illustrates the kind of failure mode that happens

when the prior is too poor. Even with a good prior, edges can still be detected
incorrectly, as illustrated in Figure 5.1. These incorrect measurements will often
be strongly correlated and hence the pose estimate will contain a large error.
The correlation in the error means that the posterior pose does not approach a
Gaussian by the central limit theorem (Condition E

+
1). We therefore model this

distribution as a two component GMM (Gaussian Mixture Model), consisting
of a narrow Gaussian (the distribution of poses where the correspondences are
correct) and a very broad Gaussian (the distribution when edge correspondences
are incorrect).

110

sensor_fusion/figs/need_good_prior/bad_correspondence2.eps

5.4 Sensor fusion

Corner
tracking

Corner
tracking

Edge
tracking

Corner
tracking

Edge
tracking

Pick best

n−1 n+1Frame n

Figure 5.5: Block diagram showing data flow for the sensor fusion algorithm over
three frames.

5.4 Sensor fusion

Both feature based and edge based tracking have failure modes, but these are
complementary and so combining them leads to a more robust system. Because
of the non-Gaussian statistics of the system, measurements cannot be trivially
fused by using linear techniques such as Kalman filtering, so several strategies
are needed to robustly combine the measurements. The above analysis leads to
the following conclusions:

1. Points are robust to large motions (Condition P
+
1), and lines need reason-

ably accurate initialisation (Condition E
−
2), hence points should be treated

first and lines second.

2. The statistics of line measurement are non-Gaussian (Condition E
+
1) so a

non-linear filter is needed.

The pose estimate covariance Ca and point cloud (Condition P
−
1) from the pre-

vious frame are used. The point tracker adds a differential measurement (Con-

dition P
+
1) resulting in a posterior covariance Cb = Ca + kCf , where Cf is the

covariance measured by the feature point tracker (see Section 2.5).

The brittle, but precise edge tracker is initialised (Condition E
−
2) using robust

differential measurements from Condition P
+
1 , as in [72]. Since the likelihood

111

sensor_fusion/figs/fusion/fusion.eps

5. SENSOR FUSION

given by the edge based tracker is a two-component GMM (Condition E
+
1) and

the prior is a Gaussian, the posterior is also a GMM which may have two modes
(see Figure 5.2). This posterior for pose is then used to obtain the 3D point cloud
needed for the next frame. Since the posterior can be bimodal, a separate point
cloud is generated for each mode. Note that if the edge tracker is correct, this
estimate of posterior pose is drift-free (Condition E

+
2).

If both modes were to be propagated all the way through the next iteration,
exponential mixture component explosion would follow since edge tracking dou-
bles the number of mixture components at each iteration. This is avoided by
comparing the performance of each point cloud on the subsequent point tracking
stage. The GMM that gave rise to the point clouds gives their relative probabil-
ity, while the difference in residual error in point tracking provides an estimate
of their likelihoods. These are then combined and only the Gaussian component
(and associated point cloud) with the highest posterior probability is retained for
the edge tracking stage. The algorithm described above is summarised below:

1. A new frame arrives and point features are detected.
2. Correspondences are found between the new features and existing features

on the model.
3. The probability that a match is correct is computed from the correspon-

dence score.
4. The pose is robustly computed for both modes, and the most probable mode

is kept.
5. The new pose is used to initialise and run an edge tracker.
6. The features are back-projected onto the model.
7. The learned relationship between matching score and matching probability

is updated based on the posterior match probability.

This process is illustrated in Figure 5.5.

Results have been taken on 768 × 288 pixel fields from a 50Hz PAL source: a
Pulnix TM-6EX video camera with a 4.2mm lens and the shutter speed set to
the highest value. The system operated at frame rate on a Pentium 4 Xeon at
2.4GHz. The use of fields as opposed to frames removes problems associated with
interlacing.

112

5.5 Results

5.5 Results

The robustness of the overall algorithm, has been demonstrated on three dif-
ferent scenarios. The first is rapid rotational camera shaking. Shaking in this
mode causes very large inter-frame image motion. However, the test scene is
not particularly challenging for the edge based tracker, so this mainly tests the
robustness of the feature based tracking system. However, the edge based tracker
must still be present, otherwise the sequence would be untrackable due to drift.
A graph of the angular position of the camera tracked over time in shown in
Figure 5.6. Some example frames are shown from this sequence in Figure 5.7
and these are representative of the entire sequence. The average image motion of
features throughout the scene is 79 pixels and the largest average image motion of
a single frame is just over 204 pixels. In this sequence, a zero order motion model
is used (no velocity information is tracked) and indeed, such a velocity model is
unlikely to be of much use since the camera experiences angular accelerations of
up to 88,500◦ s−2.

The second test shows an explicit example of the advantage of the multimodal
posterior propagation. A scene was constructed that contained a large number of
strong unmodelled edges, both on the model itself, and also in the surrounding
environment. The unmodelled edges frequently cause failure of the edge tracking
system. An example is shown in Figure 5.8. As can be seen, the motion is
not particularly challenging (especially compared to the camera shaking), but
the edge tracker fails during rotation where a previously occluded edge becomes
visible and locks onto the incorrect image edge. Since the tracking system can
cope with failures of the edge based tracker, tracking is not lost.

The third test was performed on an extended sequence taken from a hand-held
camera inside a laboratory and is 1300 fields in length. The maximum tracked
camera velocity is 12ms−1. Excerpts from this are shown in Figure 5.9. This
figure also shows one of the limitations of the system: if the geometry of the
world is too simple (for instance planar), then the point based tracker cannot
make a useful guess as to the quality of the edge based tracking result. Another
degeneracy (not shown) is pure camera rotation, since the point motion can be
modelled as a homography.

This chapter has presented a high performance tracking system based on the
combination of two different tracking systems with complementary behaviour
and very different statistics. By employing a careful analysis of the requirements
and behaviour of these systems, their synthesis into a single system has been

113

5. SENSOR FUSION

0 0.5 1 1.5 2 2.5 3
−50

0

50

100

Time / s

A
ng

le
 /

de
gr

ee
s

Figure 5.6: Graph showing the angle of a hand-held camera undergoing vigorous
rotational shaking at approximately 6Hz. The limiting factor is the rate and
range over which the author could shake the camera.

enhanced. This includes the use of one system to initialise the other, and a
non-linear method for combining the two posteriors.

5.6 Conclusions

This chapter has presented a method for combining the two different tracking
systems in such a way that the overall tracking system is both robust and drift-
free. The nonlinear filter presented came from a careful analysis of the properties
of both the tracking systems. The properties led to the conclusion that:

1. A nonlinear filter must be used.

2. A unimodal filtering system is not sufficient.

The is a tracking system which is considerable more robust than either of the
two systems, and the results reflect this by showing cases where the edge tracker
can make large corrections (required because of drift) and cases where the edge
tracker is ignored (when it produces bad measurements).

114

sensor_fusion/figs/results/angles.eps

250 260

251 261

252 262

253 263

254 264

255 265

256 266

257 267

258 268

259 269

Figure 5.7: Frames 250–269 from the vigorous shaking sequence. The frames
shown cover 0.4 seconds of the video.

115

sensor_fusion/figs/shake/a-image-00250.jpg.eps
sensor_fusion/figs/shake/a-image-00260.jpg.eps
sensor_fusion/figs/shake/a-image-00251.jpg.eps
sensor_fusion/figs/shake/a-image-00261.jpg.eps
sensor_fusion/figs/shake/a-image-00252.jpg.eps
sensor_fusion/figs/shake/a-image-00262.jpg.eps
sensor_fusion/figs/shake/a-image-00253.jpg.eps
sensor_fusion/figs/shake/a-image-00263.jpg.eps
sensor_fusion/figs/shake/a-image-00254.jpg.eps
sensor_fusion/figs/shake/a-image-00264.jpg.eps
sensor_fusion/figs/shake/a-image-00255.jpg.eps
sensor_fusion/figs/shake/a-image-00265.jpg.eps
sensor_fusion/figs/shake/a-image-00256.jpg.eps
sensor_fusion/figs/shake/a-image-00266.jpg.eps
sensor_fusion/figs/shake/a-image-00257.jpg.eps
sensor_fusion/figs/shake/a-image-00267.jpg.eps
sensor_fusion/figs/shake/a-image-00258.jpg.eps
sensor_fusion/figs/shake/a-image-00268.jpg.eps
sensor_fusion/figs/shake/a-image-00259.jpg.eps
sensor_fusion/figs/shake/a-image-00269.jpg.eps

226

228

230

232

234

236

238

240

242

244

Figure 5.8: Frames from the video sequence designed to test the sensor fusion.
Note the large number of strong unmodelled edges both on the model and in
the environment. Tracking is shown for two filters, (left) multimodal posterior
propagation and (right) point tracking followed by line tracking. Using the simple
filter, tracking has been lost by the last frame.

116

sensor_fusion/figs/side-by-side/main_failure/good-im-00226.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00226.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00228.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00228.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00230.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00230.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00232.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00232.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00234.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00234.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00236.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00236.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00238.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00238.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00240.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00240.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00242.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00242.eps
sensor_fusion/figs/side-by-side/main_failure/good-im-00244.eps
sensor_fusion/figs/side-by-side/main_failure/bad-im-00244.eps

Figure 5.9: Three excerpts from an extended sequence. Left (frames 556–565):
rapid camera rotation about the optic axis. Centre (frames 769–768) some ill
conditioning has caused the pose to drift slightly (as can be seen in the lower left
corner). When it is judged to be good, the edge tracker can make large changes
to the pose, and thus the drift is corrected. Right (frames 1286–1295): with
very few edge features, the point tracker drifts. At the end, when edge features
become visible, the edge tracker makes a large, incorrect update. Since the world
is planar, the point based tracker is unable to judge which is better, and in this
case it makes the wrong choice.

117

sensor_fusion/figs/lab/image-00556.eps
sensor_fusion/figs/lab/image-00759.eps
sensor_fusion/figs/lab/image-01285.eps
sensor_fusion/figs/lab/image-00557.eps
sensor_fusion/figs/lab/image-00760.eps
sensor_fusion/figs/lab/image-01286.eps
sensor_fusion/figs/lab/image-00558.eps
sensor_fusion/figs/lab/image-00761.eps
sensor_fusion/figs/lab/image-01287.eps
sensor_fusion/figs/lab/image-00559.eps
sensor_fusion/figs/lab/image-00762.eps
sensor_fusion/figs/lab/image-01288.eps
sensor_fusion/figs/lab/image-00560.eps
sensor_fusion/figs/lab/image-00763.eps
sensor_fusion/figs/lab/image-01289.eps
sensor_fusion/figs/lab/image-00561.eps
sensor_fusion/figs/lab/image-00764.eps
sensor_fusion/figs/lab/image-01290.eps
sensor_fusion/figs/lab/image-00562.eps
sensor_fusion/figs/lab/image-00765.eps
sensor_fusion/figs/lab/image-01291.eps
sensor_fusion/figs/lab/image-00563.eps
sensor_fusion/figs/lab/image-00766.eps
sensor_fusion/figs/lab/image-01292.eps
sensor_fusion/figs/lab/image-00564.eps
sensor_fusion/figs/lab/image-00767.eps
sensor_fusion/figs/lab/image-01293.eps
sensor_fusion/figs/lab/image-00565.eps
sensor_fusion/figs/lab/image-00768.eps
sensor_fusion/figs/lab/image-01294.eps

6. Conclusions

This thesis has made a number of significant contributions to the field of tracking
and feature detection. These contributions were required to build a high per-
formance tracking system and Figure 6.1 illustrates how all these components fit
together. Essentially, FAST feature detection, efficient feature matching, a robust
optimiser and on-line estimation of match quality are used to build an efficient
and robust point tracking system. The point based tracking system suffers from
drift, so an edge based tracking system has been used to tackle this. The two
tracking systems have very different properties and robustness has been achieved
by combining the tracking results in a nonlinear filter. The contributions of the
components are detailed here:

An efficient and robust point based tracking system. This relies on effi-
cient feature detection and matching, for which a new algorithm is described.
Furthermore, by using EM as the optimisation algorithm, a feedback loop was
created which allowed the system to estimate the quality of the match from the
matching score. This is published in [118]. The resulting tracker is easily able to
cope with prediction errors in translation causing 200 pixels image motion, and
rotations of 15◦, even when there are considerable quantities of outliers in the
data.

FAST feature detector. The FAST detector was developed to allow full-frame
feature detection to be performed sufficiently quickly that it could be used as a
component in a tracking system. The original version is published in [118] and
[121]. The feature detector was then extended to make it both faster and more
reliable. This along with experimental validation is published in [119]. The
resulting detector is both exceptionally fast (requiring under 7% of the available
time to process a video stream on a modern workstation—5 times faster than
then next best detector tested) and very repeatable compared to the other tested
detectors.

118

Compute
priors

optimisation
Robust EM

Compute
contours

Edge
tracking

Efficient
matching

Pick best

Backproject

Backproject

New video
frame

Compute
visibility

3D model

FAST
detect

Intersect
contours

optimisation
Robust EM

Feature points

Rendered

FrameFrame n−1 n

3D point cloud

3D point cloud

Robust point tracking
Nonlinear filtering

Implicit surface rendering

libCVD

Hypothesis 1

Hypothesis 2

Figure 6.1: Block diagram of the complete tracking system. Subsystems contain-
ing multiple blocks are indicated inside the coloured dashed regions.

Implicit surface renderer. The edge based tracker for implicit surfaces was
built using a new rendering system for arbitrary implicit surfaces. The renderer
used a differential equation to trace out the apparent contour and determined
occlusions by reasoning about contour intersections. These contributions are
published in [117].

Fast polygon algorithms. A suite of fast polygon intersection algorithms was
developed in order to improve efficiency of the implicit surface renderer. These
algorithms perform polygon-polygon intersections, polygon-line intersections and
polygon-point proximity detection in average O(log N) time. These are published
in [117].

Nonlinear filter for combining trackers. Careful analysis of the tracking sys-
tems was used to justify a new nonlinear filter for combining the tracking results.
Since either tracker can give an incorrect pose, the filter deferred evaluating the
validity of the poses until more data arrived in the next frame. This resulted in

119

./figs/block_diagram.eps

6. CONCLUSIONS

a tracking system with the robustness of the new point based tracking system,
but with out drift. This is published in [118].

Software The FAST feature detector, along with various support facilities, such
as video and image handling, is made available in the libCVD (Cambridge Vision
Dynamics) library, of which the author is the maintainer. The library is available
from [120].

6.1 Future work and open problems

Despite the robustness of the tracking system, there are still a considerable num-
ber of circumstances under which it can fail, such as when there are too few
features in the view to constrain tracking adequately. While it is likely that
further research can improve the robustness of the system (such as providing ro-
bustness to motion blur), one can always construct situations where tracking will
be lost. Therefore, one area of future work would be to consider systems which
could localise the object being tracked to allow tracking to continue.

Currently many localisation systems work by matching detected point features
in to a static database. An interesting avenue for research would be to create a
continually updated database of points for localisation from the 3D point clouds
acquired each frame. For rapid localisation this would require that the database
of point features can be indexed both spatially and by appearance. Furthermore,
since the change in viewpoints between features in the database and features in
the image could be quite large, it wold be useful to add computation of canonical
scale to the FAST feature detector. This would allow it to be used for extraction
of feature descriptors such as SIFT.

Another open question is that of the scalability of the tracking system. Both
the point based tracker and the line based tracking system require rendering
of the model (finding the visible edges, or the depth of arbitrary points in the
image) for tracking, but are otherwise independent of the size of the model.
Consequently, the scalability of the system depends on the scalability of the
rendering engine, and modern rendering engines are capable of rapid rendering
in vast environments. However, this makes the system scalable by putting the
responsibility of making it scalable elsewhere. In practise, although the system
could work with large models, acquiring large models is non trivial.

120

6.1 Future work and open problems

As stated in Section 1, models are built by measuring the object and then con-
structing a model. This process is both time consuming and error prone. In some
cases where the object has been manufactured from a CAD (Computer Aided
Design) model, this model could be used directly for tracking with little or no
additional effort. However, few objects have these models readily available. Al-
ternatively, surveying equipment (such as a total station) can be used to rapidly
acquire accurate 3D coordinates of surveyed points. Capturing vertices during the
surveying would allow the required 3D surface models to be constructed. With
the aid of GPS equipped total stations, very large models can be surveyed.

Even with the addition of sufficiently advanced tools, considerable user input is
required to create a model for a working tracking system. An appealing alter-
native is to use computer vision to generate a model. This could be done either
with an off-line SFM (structure from motion) system or an on line SLAM (simul-
taneous localisation and mapping) system (sometimes known as ‘causal SFM’).
It should be noted that a purely visual system will suffer from drift. However,
if absolute position is not required, then some systems can produce consistent
models when loop closing occurs. If large scale models with absolute position are
required, then an external measurement system such as GPS could be employed
to remove drift.

A system such as this would allow new objects to be tracked easily, and in the case
of a SLAM system, it would allow tracking to continue once the original model
had ceased to be in the view. However, the system presented in this thesis requires
a 3D surface model. The nature of the model allows the system to compute which
parts of the object are occluded, as well as computing the depths of given points
(which is essential to the robustness of the system). Computing this information
is still very much an open problem and considerable further research is required.

121

A. Mean bounds SSD

Consider a column vector x in RM . The Euclidean length, l can be computed as:

l2 = ‖x‖22 = xTx =
M∑

i=1

x2
i . (A.1)

Since the elements of x are real, a single element puts a lower bound on l2:

x2
k ≤

M∑

i=1

x2
i . (A.2)

If x is multiplied by an orthogonal matrix, R, the length is unchanged:

(Rx)TRx = xTRTRx = xTx = l2. (A.3)

R can be constructed so that row k is
h

1√
M

,..., 1√
M

i

. Using this, Equation A.2 and
Equation A.2 gives:

xT
h

1√
M

,..., 1√
M

iTh

1√
M

,..., 1√
M

i

x ≤ l2 (A.4)
(

M∑

i=1

xi√
M

)2

≤ l2 (A.5)

Mx ≤ l2, (A.6)

where x is the mean of the elements of x. Now consider x = v1−v2, i.e. l2 is the
SSD between v1 and v2. From Equation A.6 the length times SSD between the
means is a lower bound on the SSD:

M(v1 − v2)
2 ≤ ‖v1 − v2‖22. (A.7)

122

B. Harris matrix and Cross

Correlation

The Harris matrix, H, (see Equation 3.6) is derived by taking an image patch
over the area (u, v), shifting it by (x, y) and computing the SSD. The local score,
S is:

S =
∑

u

∑

v

(f(u, v)− f(u− x, v − y))2

=
∑

u

∑

v

f(u, v)2 − 2 f(u, v) f(u− x, v − y)︸ ︷︷ ︸
X

+f(u− x, v − y)2 , (B.1)

where f(u, v) is the intensity of the image at pixel (u, v). The summation over
the term labelled X is cross correlation. The Harris matrix is derived by taking
the Hessian of S with respect to x and y around x = y = 0. It is often claimed
that Hessian of S is equivalent to the Hessian of X, up to scale. This is not the
case. Taking S =

∑
u

∑
v 2s, so that (from Equation B.1):

s =
1

2
f(u, v)2 − f(u, v) f(u− x, v − y) +

1

2
f(u− x, v − y)2 , (B.2)

and differentiating this with respect to x and y gives:

∇s = −f(u, v)∇f(u− x, v − y) + f(u− x, v − y)∇f(u− x, v − y) . (B.3)

Therefore, differentiating again to get the Hessian, H[s] , gives:

H[s] = −f(u, v) H[f(u− x, v − y)] +∇f(u− x, v − y)T∇f(u− x, v − y)

+f(u− x, v − y) H[f(u− x, v − y)] . (B.4)

The Harris matrix is given by H[S] |x=y=0, which is the well known result[52]:

H =
∑

u

∑

v

∇f(u, v)T∇f(u, v) =

(̂

∂f

∂x

)2 (̂
∂f

∂x

∂f

∂y

)

(̂
∂f

∂x

∂f

∂y

) (̂
∂f

∂y

)2

 . (B.5)

124

6.1 Future work and open problems

Instead, H[X] |x=y=0 is given by:

HX =
∑

u

∑

v

f(u, v) H[f(u, v)] . (B.6)

Clearly, H and HX are different. Consequently, the same feature detection al-
gorithms can not be used. Algorithms based on H typically find features where
the two eigenvalues, λ1 and λ2 are large. In particular, the Shi and Tomasi[130]
detector defines the score to be:

min λ1, λ2,

and the Harris[52] detector defines the score to be an approximation of this.
Applying the same algorithms to HX will not work, since unlike H, it is not
positive semi-definite. For instance, good corner points may occur where the
eigenvalues are both large in magnitude and negative.

125

C. Proof that

∇ · (H(x) (x− c)×∇f (x)) = 0

The definition for x′ is derived by looking at constraints on the apparent contour.
Nevertheless, x′ is defined for any x, so it is a vector field in R3. The definition
for x′ (up to scale) is:

x′ =
(
H[f(x)]x

)
× gi(x) (C.1)

Taking the divergence of x′ and using the vector identity:

∇ · (a× b) = b · ∇ × a− a · ∇ × b, (C.2)

gives:

∇ · (Hx)×∇f = ∇f · ∇ ×Hx−Hx · ∇ ×∇f, (C.3)

where H = H[f(x)] and ∇f = gi(x). In general, ∇×∇a = 0, so Equation C.3
becomes

∇ · x′ = ∇f · ∇ ×Hx. (C.4)

126

6.1 Future work and open problems

Expanding the second term of the dot product and writing x =
[
x y z

]T
gives:

∇×Hx =

∂
∂x
∂
∂y
∂
∂z

×

∂2f

∂x2
∂2f

∂xy

∂2f

∂xz
∂2f

∂xy

∂2f

∂y2
∂2f

∂yz
∂2f

∂xz

∂2f

∂yz

∂2f

∂z2

x
y
x

=

∂
∂y

(
x∂2f

∂xz
+ y ∂2f

∂yz
+ z ∂2f

∂z2

)
− ∂

∂z

(
x∂2f

∂xy
+ y ∂2f

∂y2 + z ∂2f

∂yz

)

∂
∂z

(
x∂2f

∂x2 + y ∂2f

∂xy
+ z ∂2f

∂xz

)
− ∂

∂x

(
x∂2f

∂xz
+ y ∂2f

∂yz
+ z ∂2f

∂z2

)

∂
∂x

(
x∂2f

∂xy
+ y ∂2f

∂y2 + z ∂2f

∂yz

)
− ∂

∂y

(
x∂2f

∂x2 + y ∂2f

∂xy
+ z ∂2f

∂xz

)

=

x∂3f

∂xyz
+ ∂2f

∂yz
+ y ∂3f

∂y2z
+ z ∂3f

∂yz2 − x∂3f

∂xyz
− y ∂3f

∂y2z
− ∂2f

∂yz
− z ∂3f

∂yz2

x∂3f

∂x2z
+ y ∂3f

∂xyz
+ ∂2f

∂xz
+ z ∂3f

∂xz2 − ∂2f

∂xz
− x∂3f

∂x2z
− y ∂3f

∂xyz
− z ∂3f

∂xz2

∂2f

∂xy
+ x∂3f

∂x2y
+ y ∂3f

∂xy2 + z ∂3f

∂xyz
− x∂3f

∂x2y
− ∂2f

∂xy
− y ∂3f

∂xy2 − z ∂3f

∂xyz

=

0
0
0

 .

(C.5)

Substituting this result into Equation C.4 produces the result:

∇ · x′ = 0 (C.6)

127

D. Lamp parameters

Using Equation 4.16, the parameters for the lamp (with annotations) are given
below.

i β µ C

Three long thin blobs make a roughly cylindrical body for the stem.

1 1

0.25
0
2

190 0 0
0 190 0
0 0 1

2 1

0.25
0

2.5

190 0 0
0 190 0
0 0 1

3 1

0.25
0
3

190 0 0
0 190 0
0 0 2

This cuts off the stem at the bottom to stop it being very long and pointed.

4 -10000

0
0
1

1 0 0
0 1 0
0 0 10

128

6.1 Future work and open problems

i β µ C

Main ‘hemisphere’ at the front of the lamp.

5 300

1.6
0
4

6 0 0
0 4.5 0
0 0 4.5

Elongate the hemisphere slightly.

6 300

1.8
0
4

30 0 0
0 6 0
0 0 6

Sharply cut off the previous blobs to make a hemisphere. This misses the end.

7 -800

2.2
0
4

100 0 0
0 .01 0
0 0 .01

Remove the end of the blob.

8 -300

2.8
0
4

30 0 0
0 .1 0
0 0 .1

Create a cone at the rear of the lamp by stacking blobs.

9 3

1
0
4

05 0 0
0 05 0
0 0 05

10 3

0.5
0
4

06 0 0
0 06 0
0 0 06

11 3

0
0
4

08 0 0
0 08 0
0 0 08

12 3

−.5
0
4

11 0 0
0 11 0
0 0 11

Sharply cut off the last blob.

13 -3000

−0.75

0
4

200 0 0
0 .01 0
0 0 .01

129

Bibliography

[1] Y. Amit and D. Geman. Shape quantization and recognition with ran-
domized trees. Neural Computation, 9(7):1545–1588, 1997. Cited on

page 26

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 3rd edition,
1999. Cited on page 15

[3] M. Armstrong and A. Zisserman. Robust object tracking. Asian
Conference on Computer Vision, volume 1, 58–61. Singapore, 1995. Cited

on pages 14 and 79

[4] S. Arya. Nearest neighbor searching and applications. Ph.D. thesis, College
Park, MD, USA, 1995. Cited on page 25

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Y.

Wu. An optimal algorithm for approximate nearest neighbor searching.
Journal of the ACM, 45:891–923, 1998. Cited on page 25

[6] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying
framework. International Journal of Computer Vision, 221–255, 2004.
Cited on page 21

[7] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. 11th IEEE Conference on
Computer Vision and Pattern Recognition. Springer, 1997. Cited on page 25

[8] S. Belongie, J. Malik and J. Puzicha. Shape context: A new de-
scriptor for shape matching and object recognition. 14th Neural and Infor-
mation Processing Systems Conference, 831–837. Denver, Colorado, USA,
2000. Cited on page 24

130

BIBLIOGRAPHY

[9] S. Belongie, J. Malik and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):509–522, 2002. Cited on page 24

[10] M. Black and A. Jepson. Eigen-tracking: Robust matching and track-
ing of articulated objects using a view-based representation. International
Journal of Computer Vision, 36(2):63–84, 1998. Cited on page 21

[11] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammar-

ling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Pe-

titet, R. Pozo, K. Remington and R. C. Whaley. An updated set
of basic linear algebra subprograms (BLAS). ACM Transactions Mathe-
matical Software, 28(2):135–151, 2002. Cited on page 15

[12] J. F. Blinn. A generalization of algebraic surface drawing. ACM Tran-
scations on Graphics, 1(3):235–256, 1982. Cited on page 83

[13] M. Brown and D. G. Lowe. Invariant features from interest point
groups. 13th British Machine Vision Conference, 656–665. British Machine
Vision Assosciation, Cardiff, 2002. Cited on page 51

[14] J. Canny. A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.
Cited on page 76

[15] M. L. Cascia and S. Sclaroff. Fast, reliable head tracking under vary-
ing illumination: An approach based on registration of texture-mapped 3d
models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(4):322–336, 2002. Cited on page 21

[16] J. R. Cash and A. H. Karp. A variable order runge-kutta method for
initial value problems with rapidly varying right-hand sides. ACM Trans-
actions on Mathematical Software, 16(3):201–222, 1990. Cited on pages 10,

93, and 94

[17] T. Cham and J. Rehg. A multiple hypothesis approach to figure tracking.
13th IEEE Conference on Computer Vision and Pattern Recognition, 239–
245. Springer, 1999. Cited on page 107

[18] G. K. M. Cheung, T. Kanade, J.-Y. Bouguet and M. Holler. A
real time system for robust 3d voxel reconstruction of human motions. 14th

IEEE Conference on Computer Vision and Pattern Recognition, 2714–2720.
Springer, 2000. Cited on page 82

131

BIBLIOGRAPHY

[19] O. Chum and J. Matas. Matching with PROSAC - progressive sample
consensus. 18th IEEE Conference on Computer Vision and Pattern Recog-
nition, volume 1, 220–226. Springer, 2005. Cited on page 38

[20] R. Cipolla, K. Åström and P. Giblin. Motion form the frontier of
curves surfaces. 5th IEEE International Conference on Computer Vision,
269–275. Springer, Boston MA, USA, 1995. Cited on page 82

[21] R. Cipolla and A. Blake. Surface shape from the deformations of
apparent contours. International Journal of Computer Vision, 9(2):83–112,
1992. Cited on page 81

[22] R. Cipolla, G. J. Fletcher and P. J. Giblin. Surface geometry
from cusps of apparent contours. 5th IEEE International Conference on
Computer Vision, 858–863. Springer, Boston MA, USA, 1995. Cited on

page 81

[23] R. Cipolla and P. Giblin. Visual Motion of Curves and Surfaces. Cam-
bridge University Press, 2000. Cited on pages 81, 82, 84, and 86

[24] D. Claus and A. Fitzgibbon. Reliable fiducial detection in natural
scenes. Proceedings of the 8th European Conference on Computer Vi-
sion, Prague, Czech Republic, volume 3024, 469–480. Springer-Verlag, 2004.
Cited on pages 46 and 52

[25] J. Cooper, S. Venkatesh and L. Kitchen. Early jump-out corner de-
tectors. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(8):823–828, 1993. Cited on pages 46 and 47

[26] T. Darrell, G. Gordon, M. Harville and J. Woodfill. Integrated
person tracking using stereo, color, and pattern detection. International
Journal of Computer Vision, 37(2):175–185, 2000. Cited on page 105

[27] A. J. Davison. Real-time simultaneous localisation and mapping with
a single camera. 9th IEEE International Conference on Computer Vision.
Springer, Nice, France, 2003. Cited on page 21

[28] Q. Delamarre and O. D. Faugeras. 3d articulated models and multi-
view tracking with silhouettes. 7th IEEE International Conference on Com-
puter Vision, volume 2, 716–721. Springer, Kerkyra, Corfu, Greece, 1999.
Cited on page 82

[29] A. Dempster, N. Laird and R. D.B. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society,
B 39:1–38, 1977. Cited on page 35

132

BIBLIOGRAPHY

[30] P. Deuflhard. Recent progress in extrapolation methods for ordinary
differential equations. SIAM Review, 27(4):505–535, 1985. Cited on page 93

[31] J. Deutscher, A. Blake and I. Reid. Articulated body motion capture
by annealed particle filtering. 14th IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, 126–133. Springer, 2000. Cited on

page 107

[32] P. Dias, A. Kassim and V. Srinivasan. A neural network based corner
detection method. IEEE International Conference on Neural Networks,
volume 4, 2116–2120. Perth, WA, Australia, 1995. Cited on pages 46

and 52

[33] T. Drummond. TooN: Tom’s object-oriented numerics library, Accessed
2005. http://savannah.nongnu.org/projects/toon. Cited on page 15

[34] T. Drummond and R. Cipolla. Real-time tracking of highly articulated
structures in the presence of noisy measurements. 8th IEEE International
Conference on Computer Vision, 315–320. Springer, Vancouver, Canada,
2001. Cited on pages 82 and 83

[35] T. Drummond and R. Cipolla. Real-time visual tracking of complex
structures. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(7):932–946, 2002. Cited on pages 13, 16, 77, 84, and 100

[36] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and au-
tomated cartography. Communcations of the ACM, 24(6):381–395, 1981.
Cited on pages 38 and 79

[37] W. T. Freeman and E. H. Adelson. The design and use of steerable
filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(9):891–906, 1991. Cited on page 24

[38] V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231, 1998. Cited on page 25

[39] D. Gavrila and L. Davis. 3d model-based tracking of humans in action:
A multi-view approach. 10th IEEE Conference on Computer Vision and
Pattern Recognition. Springer, 1996. Cited on page 82

[40] D. Gennery. Visual tracking of known three-dimensional objects. In-
ternational Journal of Computer Vision, 7(1):243–270, 1992. Cited on

page 17

133

BIBLIOGRAPHY

[41] P. J. Giblin, J. E. Rycrofy and F. E. Pollick. Moving surfaces.
R. B. Fisher, ed., Design and Application of Curves and Surfaces, num-
ber 5 in Mathematics of Surfaces. Clarendon Press, 1994. Cited on page 84

[42] F. Girosi, M. Jones and T. Poggio. Priors stabilizers and basis func-
tions: From regularization to radial, tensor and additive splines. Technical
Report AIM-1430, MIT Computer Science and Artificial Intelligence Lab-
oratory, 1993. Cited on page 82

[43] L. van Gool, T. Moons and D. Ungureanu. Affine/photometric
invariants for planar intensity patterns. 4th Euproean Conference on Com-
puter Vision, volume 1, 642–651. Springer, 1996. Cited on page 24

[44] I. Gordon and D. G. Lowe. Scene modelling, recognition and tracking
with invariant image features. 3rd IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality, 110–119. IEEE Computer Society,
Jacksonville, USA, 2004. Cited on pages 15 and 22

[45] N. Gordon, D. Salmond and A. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEE-Proceedings-F, 140,
107–113. 1993. Cited on page 107

[46] V. Gouet and B. Lameyre. Sap: A robust approach to track objects
in video streams with snakes and points. 15th British Machine Vision Con-
ference, volume 2, 737–746. British Machine Vision Assosciation, Kingston
Upon Thames, 2004. Cited on pages 15, 26, and 105

[47] A. Guiducci. Corner characterization by differential geometry techniques.
Pattern Recognition Letters, 8(5):311–318, 1988. Cited on pages 46 and 51

[48] G. D. Hager and P. N. Belhumeur. Efficient region tracking with
parametric models of geometry and illumination. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(10):1025–1039, 1998. Cited

on page 21

[49] Y. W. Haitao Wang, Stan Z Li. Face recognition under varying lighting
conditions using self quotient image. 6th IEEE International Conference on
Automatic Face and Gesture Recognition, 819. 2004. Cited on page 84

[50] R. M. Haralick and L. G. Shapiro. Computer and robot vision, vol-
ume 1. Adison-Wesley, 1993. Cited on pages 46 and 47

[51] C. Harris and C. Stennett. RAPID, a video rate object tracker. 1st

British Machine Vision Conference, 73–77. British Machine Vision Assos-
ciation, Oxford, 1990. Cited on pages 13 and 76

134

BIBLIOGRAPHY

[52] C. Harris and M. Stephens. A combined corner and edge detector.
Alvey Vision Conference, 147–151. 1988. Cited on pages 46, 49, 68, 72, 124,

and 125

[53] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2nd edition, 2004. Cited on pages 16

and 22

[54] P. J. Huber. Robust estimation of a location parameter. Annals of Math-
ematical Statistics, 73–101, 1964. Cited on page 77

[55] P. J. Huber. Robust Statistics. Wiley, 1981. Cited on page 77

[56] M. Isard and A. Blake. Condensation–conditional density propagation
for visual tracking. International Journal of Computer Vision, 29(8):5–28,
1998. Cited on page 106

[57] ISO/IEC 10918-1:1994 Digital compression and coding of continuous-tone
still images: Requirements and guidelines. Technical comittee: JTC 1/SC
29, 1994. Cited on page 28

[58] O. R. James L. Crowley. Fast computation of characteristic scale using
a half octave pyramid. Scale Space 03: 4th International Conference on
Scale-Space theories in Computer Vision. Isle of Skye, Scotland, UK, 2003.
Cited on page 50

[59] A. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(5):433–449, 1999. Cited on page 25

[60] A. E. Johnson and M. Hebert. Surface matching for object recognition
in complex 3-d scenes. Image and Vision Computing, 16:635–651, 1998.
Cited on page 25

[61] S. J. Julier and J. K. Uhlmann. A new extension of the kalman filter to
nonlinear systems. The Proceedings of AeroSense: The 11th International
Symposium on Aerospace/Defense Sensing, Simulation and Controls, 1628–
1632. SPIE, Orlando, Florida, USA, 1997. Cited on page 104

[62] F. Jurie and M. Dhome. A simple and efficient template matching
algorithm. 8th IEEE International Conference on Computer Vision, 544–
549. Springer, Vancouver, Canada, 2001. Cited on page 21

135

BIBLIOGRAPHY

[63] F. Jurie and M. Dhome. Hyperplane approximation for template match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7), 2002. Cited on page 21

[64] R. E. Kalman. A new approach to linear filtering and prediction problems.
ASME Journal of Basic Engineering, 82:35–45, 1960. Cited on pages 77

and 104

[65] H. Kato and M. Billinghurst. Marker tracking and HMD calibration
for a video-based augmented reality conferenencing system. 2nd IEEE Inter-
national Workshop on Augmented Reality, 85–94. IEEE CS, San Francisco,
CA, USA, 1999. Cited on page 12

[66] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation
for local image descriptors. 17th IEEE Conference on Computer Vision and
Pattern Recognition, 506–513. Springer, 2004. Cited on page 24

[67] C. Kemp and T. Drummond. Multimodal tracking using texture
changes. 15th British Machine Vision Conference. British Machine Vision
Assosciation, Kingston Upon Thames, 2004. Cited on pages 14, 79, and 82

[68] C. Kemp and T. Drummond. Dynamic measurement clustering to aid
real time tracking. 10th IEEE International Conference on Computer Vi-
sion, volume 2, 1500–1507. Springer, Beijing, China, 2005. Cited on

pages 14 and 80

[69] C. S. Kenney, B. S. Manjunath, M. Zuliani, M. G. A. Hewer and

A. V. Nevel. A condition number for point matching with application to
registration and postregistration error estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(11):1437–1454, 2003. Cited

on pages 46 and 49

[70] S. Kirkpatrick, C. Gelatt and M. Vecchi. Optimization by sim-
ulated annealing. Science, 220, 4598(4598):671–680, 1983. Cited on

page 34

[71] L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern
Recognition Letters, 1(2):95–102, 1982. Cited on pages 46 and 47

[72] G. Klein and T. Drummond. Tightly integrated sensor fusion for robust
visual tracking. Image and Vision Computing, 22(10):769–776, 2004. Cited

on pages 78 and 111

136

BIBLIOGRAPHY

[73] G. Klein and T. Drummond. A single frame visual gyroscope. 16th

British Machine Vision Conference. British Machine Vision Assosciation,
Oxford, 2005. Cited on page 78

[74] J. J. Kœnderink. Solid Shape. MIT Press, Cambridge, Massachusetts,
USA, 1990. Cited on page 84

[75] J. J. Kœnderink and A. J. van Doorn. The singularities of the visual
mapping. Biological Cybernetics, 24:51–59, 1976. Cited on page 88

[76] J. J. Kœnderink and A. J. van Doorn. The shape of smooth objects
and the way contours end. Perception, 11:129–137, 1982. Cited on page 88

[77] J. J. Kœnderink and A. J. van Doorn. Representation of local ge-
ometry in the visual system. Biological Cybernetics, 55(6):367–375, 1987.
Cited on page 23

[78] D. Koller, K. Daniilidisy and H.-H. Nagelyz. Model-based object
tracking in monocular image sequences of road traffic scenes. International
Journal of Computer Vision, 10(3):257–281, 1993. Cited on page 80

[79] D. J. Langridge. Curve encoding and detection of discontinuities. Com-
puter Vision, Graphics and Image Processing, 20(1):58–71, 1987. Cited

on pages 46 and 47

[80] S. Lazebnik, C. Schmid and J. Ponce. Sparse texture representation
using affine-invariant neighborhoods. 16th IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, 319–324. Springer, 2003. Cited

on page 25

[81] V. Lepetit and P. Fua. Monocular model-based 3d tracking of rigid
objects: A survey. Foundations and Trends in Computer Graphics and
Vision, 1(1):1–89, 2005. Cited on page 80

[82] V. Lepetit, P. Lagger and P. Fua. Randomized trees for real-time
keypoint recognition. 18th IEEE Conference on Computer Vision and Pat-
tern Recognition. Springer, 2005. Cited on page 26

[83] V. Lepetit, J. Pilet and P. Fua. Point matching as a classification
problem for fast and robust object pose estimation. 17th IEEE Conference
on Computer Vision and Pattern Recognition. Springer, 2004. Cited on

page 25

[84] H.-C. Liu and M. D. Srinath. Corner detection from chain code. Pat-
tern Recognition Letters, 23(1):51–68, 1990. Cited on pages 46 and 47

137

BIBLIOGRAPHY

[85] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3d
surface reconstruction algorithm. Proceedings of SIGGRAPH, volume 21,
163–169. 1987. Cited on page 82

[86] D. G. Lowe. Fitting parameterized 3-d models to images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13:441–450, 1991.
Cited on pages 14 and 82

[87] D. G. Lowe. Robust model-based motion tracking through the integra-
tion of search and estimation. International Journal of Computer Vision,
8(2):113–122, 1992. Cited on page 79

[88] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004. Cited on

pages 22, 23, 25, 32, 46, 50, and 68

[89] D. G. Lowe. Demo software: Sift keypoint detector.
http://www.cs.ubc.ca/~lowe/keypoints/, Accessed 2005. Cited on

page 70

[90] G. Loy and A. Zelinsky. A fast radial symmetry transform for detecting
points of interest. 7th Euproean Conference on Computer Vision, 358–368.
Springer, 2002. Cited on pages 46 and 52

[91] B. D. Lucas and T. Kanade. An iterative image registration technique
with application to stereo vision. 7th International Joint Conference on
Artificial Intelligence, 674–679. 1981. Cited on pages 21 and 23

[92] B. Luo, A. D. J. Cross and E. R. Hancock. Corner detection via
topographic analysis of vector potential. 9th British Machine Vision Con-
ference. British Machine Vision Assosciation, Southampton, 1998. Cited

on pages 46 and 50

[93] J. MacCormick and A. Blake. A probabilistic exclusion principle for
tracking multiple objects. 7th IEEE International Conference on Computer
Vision, 572–578. Springer, Kerkyra, Corfu, Greece, 1999. Cited on page 107

[94] J. MacCormick and M. Isard. Partitioned sampling, articulated ob-
jects, and interface-quality hand tracking. 6th Euproean Conference on
Computer Vision, volume 2, 3–19. Springer, 2000. Cited on page 107

[95] E. Marchand, P. Bouthemy, F. Chaumette and V. Moreau. Ro-
bust real-time visual tracking using a 2D-3D model-based approach. 7th

IEEE International Conference on Computer Vision, volume 1, 262–268.
Springer, Kerkyra, Corfu, Greece, 1999. Cited on pages 14 and 77

138

BIBLIOGRAPHY

[96] D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the
Royal Society of London B, 207:187–217, 1980. Cited on pages 76 and 79

[97] I. Matthews, T. Ishikawa and S. Baker. The template update prob-
lem. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(6):810–815, 2004. Cited on pages 21 and 22

[98] G. Medioni and Y. Yasumoto. Corner detection and curve representa-
tion using cubic b-splines. Computer Vision, Graphics and Image Process-
ing, 39(3):279–290, 1987. Cited on pages 46 and 47

[99] J. Menon, B. Wyvill, C. Bajaj, J. Bloomenthal, B. Guo,

J. Hart and G. Wyvill. An introduction to implicit techniques, sig-
graph course notes on implicit surfaces for geometric modelling and com-
puter graphics, 1996. Cited on page 83

[100] R. van der Merwe, A. Doucet, N. de Freitas and E. Wan. The
unscented particle filter. Technical report, Cambridge University Engineer-
ing Department, 2000. Cited on page 107

[101] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant
interest points. 8th IEEE International Conference on Computer Vision,
525–531. Springer, Vancouver, Canada, 2001. Cited on pages 46, 51, 68,

and 69

[102] K. Mikolajczyk and C. Schmid. An affine invariant interest point
detector. European Conference on Computer Vision, 128–142. Springer,
2002. Copenhagen. Cited on pages 23, 46, 50, and 51

[103] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(10):1615–1630, 2005. Cited on pages 24 and 25

[104] F. Mohannah and F. Mokhtarian. Performenace evaluation of corner
detection algorithms under affine and similarity transforms. T. F. Cootes

and C. Taylor, eds., 12th British Machine Vision Conference. British
Machine Vision Assosciation, Manchester, 2001. Cited on page 52

[105] F. Mokhtarian and R. Suomela. Robust image corner detection
through curvature scale space. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(12):1376–1381, 1998. Cited on pages 46 and 47

[106] N. D. Molton, A. J. Davison and I. D. Reid. Locally planar patch
features for real-time structure from motion. 15th British Machine Vision

139

BIBLIOGRAPHY

Conference. British Machine Vision Assosciation, Kingston Upon Thames,
2004. Cited on page 21

[107] H. Moravec. Obstacle avoidance and navigation in the real world by
a seeing robot rover. tech. report CMU-RI-TR-80-03, Robotics Institute,
Carnegie Mellon University & doctoral dissertation, Stanford University.
Carnegie Mellon University, 1980. Available as Stanford AIM-340, CS-
80-813 and republished as a Carnegie Mellon University Robotics Institue
Technical Report to increase availability. Cited on pages 46 and 48

[108] D. R. Musser. Introspective sorting and selection algorithms. Software
Practice and Experience, 27(8):983, 1997. Cited on page 29

[109] A. Noble. Finding corners. Image and Vision Computing, 6(2):121–128,
1988. Cited on pages 46, 49, and 50

[110] A. Noble. Descriptions of image surfaces. Ph.D. thesis, Department of
Engineering Science, University of Oxford., 1989. Cited on pages 46 and 49

[111] M. S. Paterson and F. F. Yao. Efficient binary space partitions for
hidden surface removal and solid modeling. Discrete and Computational
Geometry, 5(5):485–503, 1990. Cited on page 77

[112] K. Pearson. Principal components analysis. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 6(2):559, 1901.
Cited on page 24

[113] R. Plänkers and P. Fua. Articulated soft objects for video-based
body modeling. 8th IEEE International Conference on Computer Vision.
Springer, Vancouver, Canada, 2001. Cited on page 83

[114] R. Plänkers and P. Fua. Model-based silhouette extraction for accurate
people tracking. 7th Euproean Conference on Computer Vision, 325–339.
Springer, 2002. Cited on page 83

[115] W. H. Press, S. A. Teukolsky, W. H. Vetterling and B. P.

Flannery. Numerical Recipes in C. Cambridge University Press, 1999.
Cited on pages 93 and 95

[116] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986. Cited on page 60

140

BIBLIOGRAPHY

[117] E. Rosten and T. Drummond. Rapid rendering of apparent contours of
implicit surfaces for real-time tracking. 14th British Machine Vision Con-
ference, volume 2, 719–728. British Machine Vision Assosciation, Norwhich,
2003. Cited on page 119

[118] E. Rosten and T. Drummond. Fusing points and lines for high perfor-
mance tracking. 10th IEEE International Conference on Computer Vision,
volume 2, 1508–1515. Springer, Beijing, China, 2005. Cited on pages 56,

118, and 120

[119] E. Rosten and T. Drummond. Machine learning for high speed cor-
ner detection. 9th Euproean Conference on Computer Vision, To appear.
Springer, 2006. Cited on page 118

[120] E. Rosten, T. Drummond, E. Eade, G. Reitmayr, P. Smith,

C. Kemp, G. Klein and T. Gan. libCVD: Cambridge vision dynamics
library, Accessed 2005. http://savannah.nongnu.org/projects/libcvd.
Cited on pages 16 and 120

[121] E. Rosten, G. Reitmayr and T. Drummond. Real-time video annota-
tions for augmented reality. International Symposium on Visual Computing.
2005. Cited on pages 56 and 118

[122] W. S. Rutkowski and A. Rosenfeld. A comparison of corner detec-
tion techniques for chain coded curves. Technical Report 623, Maryland
University, 1978. Cited on pages 46 and 47

[123] F. Schaffalitzky and A. Zisserman. Viewpoint invariant texture
matching and wide baseline stereo. 8th IEEE International Conference on
Computer Vision, 636–643. Springer, Vancouver, Canada, 2001. Cited on

page 51

[124] F. Schaffalitzky and A. Zisserman. Multi-view matching for un-
ordered image sets, or How do I organise my holiday snaps? 7th Euproean
Conference on Computer Vision, 414–431. Springer, 2002. Cited on pages 24

and 51

[125] C. Schmid and R. Mohr. Local greyvalue invariants for image re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):530–534, 1997. Cited on page 23

[126] C. Schmid, R. Mohr and C. Bauckhage. Comparing and evaluating
interest points. 6th IEEE International Conference on Computer Vision,
230–235. Springer, Bombay, India, 1998. Cited on page 69

141

BIBLIOGRAPHY

[127] C. Schmid, R. Mohr and C. Bauckhage. Evaluation of interest point
detectors. International Journal of Computer Vision, 37(2):151–172, 2000.
Cited on pages 44, 53, and 66

[128] A. Shahrokni, T. Drummond and P. Fua. Texture boundary detec-
tion for real-time tracking. 8th Euproean Conference on Computer Vision,
volume 2, 566–577. Springer, 2004. Cited on page 79

[129] A. Shahrokni, T. Drummond and P. Fua. Fast texture-based tracking
and delineation using texture entropy. 10th IEEE International Conference
on Computer Vision. Springer, Beijing, China, 2005. Cited on page 79

[130] J. Shi and C. Tomasi. Good features to track. 9th IEEE Conference
on Computer Vision and Pattern Recognition. Springer, 1994. Cited on

pages 46, 49, 68, 69, and 125

[131] B. Sklar. Digital Communications. Prentice Hall, 1988. Cited on page 72

[132] S. M. Smith. http://www.fmrib.ox.ac.uk/~steve/susan/susan2l.c,
Accessed 2005. Cited on pages 68 and 72

[133] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level
image processing. International Journal of Computer Vision, 23(1):45–78,
1997. Cited on pages 46, 51, and 70

[134] K. Stark and T. Ihle. Visual tracking of solid objects based on an active
contour model. 8th British Machine Vision Conference. British Machine
Vision Assosciation, Essex, 1997. Cited on page 83

[135] B. Stenger, P. R. S. Mendonça and R. Cipolla. Model-based 3d
tracking of an articulated hand. 15th IEEE Conference on Computer Vision
and Pattern Recognition, 310–315. Springer, 2001. Cited on page 82

[136] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis (English
Translation). Springer-Verlag, 1976. Cited on page 93

[137] G. Taylor and L. Kleeman. Fusion of multimodal visual cues for model-
based object tracking. Australian Conference on Robotics and Automation.
Brisbane, Austraila, 2003. Cited on pages 15 and 105

[138] P. Tissainayagam and D. Suter. Assessing the performance of cor-
ner detectors for point feature tracking applications. Image and Vision
Computing, 22(8):663–679, 2004. Cited on page 53

142

BIBLIOGRAPHY

[139] B. Tordoff and D. W. Murray. Guided sampling and consensus for
motion estimation. 7th Euproean Conference on Computer Vision. Springer,
2002. Cited on pages 37, 38, and 79

[140] P. H. Torr and A. Zisserman. MLESAC: A new robust estimator with
application to estimating image geometry. Computer Vision and Image
Understanding, 78:138–156, 2000. Cited on pages 37 and 79

[141] K. Toyama and G. D. Hager. Incremental focus of attention for robust
vision-based tracking. International Journal of Computer Vision, 35(1):45–
63, 1999. Cited on page 105

[142] M. Trajkovic and M. Hedley. Fast corner detection. Image and Vision
Computing, 16(2):75–87, 1998. Cited on pages 46, 51, and 53

[143] J. Tukey. A survey of sampling from contaminated distributions.
I. Olkin, ed., Contributions to Probability and Statistics, 448–485. Stan-
ford University Press, 1960. Cited on page 77

[144] L. Vacchetti, V. Lepetit and P. Fua. Stable 3–d tracking in real-time
using integrated context information. 16th IEEE Conference on Computer
Vision and Pattern Recognition. Springer, 2003. Cited on page 22

[145] L. Vacchetti, V. Lepetit and P. Fua. Stable real-time 3d tracking
using online and offline information. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 26(10):1385–1391, 2004. Cited on pages 14

and 22

[146] L. Vacchetti and V. L. amd Pascal Fua. Combining edge and tex-
ture information for real-time accurate 3d camera tracking. 3rd IEEE and
ACM International Symposium on Mixed and Augmented Reality. IEEE
Computer Society, Jacksonville, USA, 2004. Cited on pages 15 and 105

[147] V. Varadarajan. Lie Groups, Lie Algebras and Their Representations.
Number 102 in Graduate Texts in Mathematics. Springer-Verlag, 1974.
Cited on page 17

[148] G. Vegter and M. Szafraniec. Apparent contours of implicit surfaces.
Technical Report ECG-TR-124102-03, ECG, 2002. Cited on pages 84 and 86

[149] P. A. Viola and M. J. Jones. Rapid object detection using a boosted
cascade of simple features. 15th IEEE Conference on Computer Vision and
Pattern Recognition, volume 1, 511–518. Springer, 2001. Cited on page 72

143

BIBLIOGRAPHY

[150] H. Wang and M. Brady. Real-time corner detection algorithm for mo-
tion estimation. Image and Vision Computing, 13(9):695–703, 1995. Cited

on pages 46 and 48

[151] G. Wyvill, C. McPheeters and B. Wyvill. Data structure for soft
objects. The Visual Computer, 2(4):277–234, 1986. Cited on page 83

[152] Z. Zhang, R. Deriche, O. Faugeras and Q. Luong. A robust tech-
nique for matching two uncalibrated images through the recovery of the
unknown epipolar geometry. Artificial Intelligence, 78:87–119, 1995. Cited

on page 25

[153] Z. Zheng, H. Wang and E. K. Teoh. Analysis of gray level corner
detection. Pattern Recognition Letters, 20(2):149–162, 1999. Cited on

pages 46 and 49

[154] M. Zuliani, C. Kenney and B. Manjunath. A mathematical com-
parison of point detectors. Second IEEE Image and Video Registration
Workshop (IVR). Washington DC, USA, 2004. Cited on page 49

144

	 Declaration
	 Acknowledgements
	 Abstract
	0 Contents
	1 Introduction
	1.1 Mathematical Tools
	1.2 3D geometry
	1.3 Projection and cameras
	1.4 Layout of thesis

	2 Feature based tracking
	2.1 Introduction
	2.2 Previous work
	2.2.1 Tracking
	2.2.2 Feature extraction and matching

	2.3 Operation of the tracker
	2.4 Efficient feature matching
	2.5 Position optimisation
	2.5.1 Calculation of the match prior from SSD

	2.6 Results
	2.6.1 Synthetic test of point tracking
	2.6.2 Tests on images

	2.7 Conclusions

	3 Feature Detection
	3.1 Previous work
	3.1.1 Corner detectors
	3.1.2 Comparison of feature detectors

	3.2 The segment-test algorithm
	3.3 FAST: accelerating the segment test
	3.3.1 Scoring and Filtering

	3.4 Even FASTer: a machine learning approach
	3.4.1 Example detectors and features

	3.5 Evaluation
	3.5.1 Repeatability
	3.5.2 Performance

	3.6 Conclusions

	4 Edge Based Tracking
	4.1 Introduction
	4.2 Previous work
	4.2.1 Modelling and tracking of curved surfaces
	4.2.2 Implicit surfaces

	4.3 The edge based tracking system in detail
	4.4 Rapid rendering of implicit surfaces
	4.4.1 Calculating the apparent contour
	4.4.2 Determining the visibility of the apparent contour
	4.4.2.1 Intersections
	4.4.2.2 Cusps
	4.4.2.3 Propagating depth information between contours

	4.4.3 Determining Surface Visibility

	4.5 Rapid rendering of the visible apparent contour
	4.5.1 Solving the differential equation
	4.5.1.1 Fixed step size solver
	4.5.1.2 Variable step size solver
	4.5.1.3 Termination strategies

	4.5.2 Finding contours
	4.5.3 Fast contour search techniques

	4.6 Tracking
	4.6.1 Results

	4.7 Conclusions

	5 Sensor fusion
	5.1 Introduction
	5.2 Previous work
	5.3 Sensor analysis
	5.3.1 Point features
	5.3.2 Edge tracking

	5.4 Sensor fusion
	5.5 Results
	5.6 Conclusions

	6 Conclusions
	6.1 Future work and open problems

	Appendix A. Mean bounds SSD
	Appendix B. Harris matrix and Cross Correlation
	Appendix C. Proof that div (H(x)(x-c)grad f(x)) =0
	Appendix D. Lamp parameters
	Bibliography

